Liệu vắc-xin mRNA có thể tạo ra miễn dịch bảo vệ lâu dài chống lại nhiễm ký sinh trùng?
 Cần nhấn mạnh rằng các nghiên cứu về vắc-xin mRNA trên cả thử nghiệm lâm sàng ở người và mô hình động vật đã chứng minh rằng các vắc-xin này có khả năng khởi phát đáp ứng miễn dịch mạnh mẽ, bền vững và sự bảo vệ lâu dài có thể được duy trì nhờ trí nhớ miễn dịch (10, 137).
 Một yếu tố then chốt trong phát triển vắc-xin chống ký sinh trùng là đạt được miễn dịch bảo vệ lâu dài thông qua việc tạo ra các tế bào nhớ B và T có thời gian tồn tại lâu dài, có khả năng mang lại hiệu quả vượt trội so với đáp ứng điều hòa thường thấy trong nhiễm tự nhiên (28).Nhiễm giun sán tự nhiên có thể vừa tạo ra đáp ứng bảo vệ, vừa gây đáp ứng điều hòa, mà đáp ứng này lại có khả năng ức chế hiệu quả vắc-xin khác (bystander vaccination) (212). Đáp ứng điều hòa thường đặc trưng bởi sự tiết ra cytokine ức chế (TGF-β, IL-10) từ tế bào T điều hòa (Treg) (213), góp phần làm giảm khả năng kháng tái nhiễm (ví dụ trong sán máng) trên mô hình động vật (214). Ngược lại, một đáp ứng miễn dịch cân bằng giữa các phân nhóm T CD4+ giúp đỡ (Th1, Th2, Th17), với các cytokine chủ chốt như IFN-γ, IL-4 và IL-21, đã được chứng minh có vai trò trong bảo vệ chống tái nhiễm giun sán (215). Vắc-xin mRNA có ưu thế ở chỗ vừa thúc đẩy miễn dịch dịch thể (khởi phát interferon type I, đáp ứng lệch Th1), vừa kích thích miễn dịch tế bào, đặc biệt là hoạt hóa T CD4+ hỗ trợ quá trình biệt hóa tế bào B và hình thành trí nhớ miễn dịch (9, 142, 216). Những đặc điểm này cho thấy mRNA là nền tảng phù hợp để phát triển vắc-xin chống nhiễm giun sán.
 Một điểm quan trọng khác là khả năng duy trì miễn dịch bảo vệ của vắc-xin ngay cả khi nồng độ kháng thể giảm xuống hoặc biến mất (do kháng thể chỉ có thời gian bán hủy khoảng 30 ngày). Cơ chế giữ kháng nguyên lâu dài nhờ tế bào tua nang (follicular DCs) tại hạch lympho ngoại vi đã được chứng minh là rất quan trọng để duy trì miễn dịch do vắc-xin mRNA tạo ra (135, 136), cũng như trong các chiến lược miễn dịch–điều trị (I&T) chống sốt rét (61) và sán máng (29).
 Tương tự như tranh luận gần đây về hiệu quả của vắc-xin mRNA SARS-CoV-2 so với miễn dịch tự nhiên (217), người ta cho rằng việc tái phơi nhiễm thường xuyên với KSTtại vùng lưu hành sau tiêm chủng có thể giúp duy trì lâu dài miễn dịch do vắc-xin tạo ra. Thêm vào đó, một nghiên cứu gần đây cho thấy đáp ứng miễn dịch của vật chủ đối với vắc-xin chống sán máng có thể được tăng cường nhờ điều trị lặp lại bằng thuốc praziquantel, một loại thuốc hiện vẫn được dùng rộng rãi trong kiểm soát cộng đồng. Bằng cách tiêu diệt giun, phá hủy lớp vỏsán và giải phóng các phân tử KST vào cơ thể, praziquantel cung cấp thêm một nguồn kháng nguyên tự nhiên, giúp kích thích mạnh mẽ đáp ứng miễn dịch (218). Tất cả những đặc điểm này nhấn mạnh rằng vắc-xinmRNA có tiềm năng lớn trong việc tạo ra đáp ứng miễn dịch bảo vệ lâu dài chống lại nhiễm ký sinh trùng.
 Phát triển vắc-xin mRNA đa giá chống giun sán: Đã đến lúc tái khởi động
 Hiện nay có nhiều bằng chứng thuyết phục rằng việc phát triển các vắc-xin cho phòng chống giun đa giá là cần thiết và hiệu quả nếu mục tiêu kiểm soát hoặc loại trừ nhiễm giun sán ký sinh muốn đạt được (14). Hơn nữa, hướng đi này có thể tiến xa hơn khi các nhà nghiên cứu đề xuất phát triển vắc-xin pan-anthelmintic đơn liều, có thể sử dụng chống lại nhiều loài KST cùng một vật chủ, nhằm khởi phát đáp ứng miễn dịch mạnh và bền vững với tác dụng phụ tối thiểu (14).
 Việc phát triển vắc-xin pan-anthelmintic dựa trên nhiều kháng nguyên có tính bảo vệ chéo có thể cung cấp một giải pháp mới thay thế cho vắc-xin toàn kháng nguyên. Cách tiếp cận này càng cấp thiết hơn khi nhiễm đồng thời nhiều loài giun sán là tình trạng phổ biến ở những cộng đồng thiệt thòi tại nhiều quốc gia đang phát triển (219).
 Nền tảng mRNA có khả năng nhắm tới nhiều mục tiêu kháng nguyên khác nhau (220) và các hiệu ứng hiệp đồng in vivo khi phối hợp nhiều mRNA có thể làm tăng đáng kể miễn dịch bảo vệ (147). Vì vậy, việc phát triển vắc-xin mRNA đa giá chống giun sán được kỳ vọng sẽ tạo ra bước tiến đột phá trong kiểm soát bệnh ký sinh trùng này, qua đó cải thiện rõ rệt sức khỏe cộng đồng. Điều này càng được củng cố bởi bằng chứng rằng đồng phân phối nhiều mRNA có thể tạo ra hiệu ứng hiệp đồng, giúp tăng cường và mở rộng phạm vi miễn dịch bảo vệ, điển hình là vắc-xin hexaplex MDNP chống Toxoplasma gondii (180).Đáng chú ý, nền tảng mRNA đa giá cũng đã được tối ưu hóa thành công cho nhiều tổ hợp kháng nguyên, mở ra tiềm năng phát triển các vắc-xin đa giá chống lại các biến thể SARS-CoV-2 (148), cũng như virus cúm mùavà cúm trong các vụ dịch (149).
 KẾT LUẬN
 Nền tảng mRNA là một công nghệ mới đầy tiềm năng, đã làm thay đổi căn bản lĩnh vực phát triển vắc-xin. Vắc-xin mRNA có thể được thiết kế đơn giản, triển khai nhanh chóng, sản xuất dễ dàng, chi phí thấp và quan trọng hơn, chúng có khả năng kích thích miễn dịch dịch thể và miễn dịch tế bào bảo vệ rộng và kéo dài (220). Việc phát triển “thần tốc” và triển khai thành công sau đó các vắc-xin mRNA SARS-CoV-2 hiệu quả cao là kết quả từ sự bùng phát dữ dội chưa từng có của Đại dịch COVID-19. Sự tăng tốc trong phát triển các vắc-xin mRNA, hiện đang ở nhiều giai đoạn thử nghiệm lâm sàng để nhắm đến một loạt các mầm bệnh (168-179), đã khơi dậy sự quan tâm lớn trong việc ứng dụng phương pháp này để phát triển các vắc-xin chống KST hiệu quả và bền vững, bao gồm các vắc-xin chống lại giun sán - tác nhân gây bệnh cho hơn 1/4 dân số toàn cầu, chủ yếu sống trong cảnh nghèo đói cùng cực (237).
 Đứng đầu danh sách ưu tiên có thể nói là vắc-xin chống bệnh sán máng, mặc dù những hạn chế trong phát triển và sản xuất vắc-xin mRNA đòi hỏi cần có nhiều nghiên cứu sâu hơn trong tương lai. Đây vẫn là một căn bệnh vừa thúc đẩy nghèo đói, vừa gây kỳ thị xã hội, chủ yếu xảy ra tại các vùng nông thôn nghèo của các quốc gia đang phát triển. Thực tế, hiện chưa có vắc-xin phòng sán máng nào cho người hay động vật, mặc dù tạp chí Science đã xếp vắc-xin chống sán máng vào nhóm 10 loại vắc-xin cấp bách nhất cần thiết để cải thiện sức khỏe cộng đồng toàn cầu (238). Cho đến nay, mặc dù đã xác định và thử nghiệm được nhiều ứng viên vắc-xin chống sán máng, nhưng rất ít trong số đó được đưa vào TNLS, bởi miễn dịch bảo vệ tạo ra vẫn chưa đủ mạnh. Điều cần thiết và cấp bách hiện nay là một nền tảng vắc-xin chống sán máng mang tính cách mạng, hiệu quả, có khả năng thúc đẩy quá trình phát triển và thử nghiệm ứng viên vắc-xin với năng suất cao dựa trên công nghệ tiên tiến.
 Bằng cách tận dụng cách tiếp cận vắc-xin mRNA, vốn đã chứng minh thành công rực rỡ trong phát triển các vắc-xin COVID-19 hiệu quả cao, kết hợp với việc sử dụng các mô hình động vật phù hợp để đánh giá hiệu quả bảo vệ của ứng viên vắc-xin và xác định các dấu ấn miễn dịch liên quan đến bảo vệ, mục tiêu này hoàn toàn có thể đạt được. Vắc-xin mRNA chống KST mở ra triển vọng rõ ràng trong việc cải thiện sức khỏe cho con người và động vật ở vùng lưu hành, đồng thời bảo vệ khách du lịch và quân nhân khỏi nguy cơ phơi nhiễm – tất cả đều là những nhóm dân số tiềm năng được hưởng lợi.Ngoài ra, việc tiếp tục tinh chỉnh và tối ưu hóa công nghệ vắc-xin mRNA đa giá chống lại bệnh sán máng và các bệnh KST khác có thể mang lại những cải thiện đáng kể trong khả năng tiếp cận các kỹ thuật vắc-xin tiên tiến, cũng như triển khai các vắc-xin hiệu quả tại các khu vực chịu ảnh hưởng nặng nề nhất bởi KST trên toàn cầu.
 TÀI LIỆU THAM KHẢO
 1. Standaert B, Rappuoli R. 2017. Towards a more comprehensive approachfor a total economic assessment of vaccines? The building blocks for ahealth economic assessment of vaccination. J Mark Access Health Policy5:1335162. 
 2. Plotkin S. 2014. History of vaccination. Proc Natl Acad Sci USA 111:12283-12287.
 3. Jenner E. 1798. An inquiry into the causes and effects of the variolae vaccinae: A disease discovered in some of the western counties of England,particularly Gloucestershire, and known by the name of the cow pox.Samuel Cooley, Publisher, Springfield, MA.
 4. Bloom DE, Black S, Salisbury D, Rappuoli R. 2018. Antimicrobial resistanceand the role of vaccines. Proc Natl Acad Sci U S A 115:12868-12871.
 5. Hollingsworth RE, Jansen K. 2019. Turning the corner on therapeutic cancervaccines. NPJ Vaccines 4:7. 
 6. Bottazzi M, Hotez P. 2013. Vaccine Nation: 10 most important diseases without a licensed vaccine. https://blogs.bcm.edu/2013/09/03/vaccine-nation-10-most-important-diseases-without-a-licensed-accine/
 7. Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. 2021. mRNA vaccinesmanufacturing: challenges and bottlenecks. Vaccine 39:2190-2200. 
 8. Heine A, Juranek S, Brossart P. 2021. Clinical and immunological effectsof mRNA vaccines in malignant diseases. Mol Cancer 20:52. 
 9. Cagigi A, Lore K. 2021. Immune responses induced by mRNA vaccinationin mice, monkeys and humans. Vaccines (Basel) 9:61. 
 10. Zhang C, Maruggi G, Shan H, Li J. 2019. Advances in mRNA vaccines for infectious diseases. FrontImmunol 10:594. 
 11. Ashley EA, Pyae Phyo A, Woodrow CJ. 2018. Malaria. Lancet 391:1608–1621.
 12. Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y, Williams GM, McManus DP.2002. Schistosomiasis. N Engl J Med 346:1212–1220. 
 13. Tomazic ML, Marugan-Hernandez V, Rodriguez AE. 2021. Next-generation technologies and systemsbiology for the design of novel vaccinesagainst apicomplexan parasites. Front Vet Sci 8:800361.
 14. Zawawi A, Else KJ. 2020. Soil-transmitted helminth vaccines: are we getting closer? Front Immunol 11:576748. 
 15. Park JW, Lagniton PNP, Liu Y, Xu RH. 2021. mRNA vaccines for COVID-19:What, why and how. Int J Biol Sci 17:1446–1460. 
 16. Molehin AJ, McManus DP, You H. 2022. Vaccines for human schistosomiasis: recent progress, new developments and future prospects. Int J MolSci 23:2255. 
 17. You H, McManus DP. 2015. Vaccines and diagnostics for zoonotic Schistosomiasis japonica. Parasitology 142:271–289. 
 18. McManus DP, Bergquist R, Cai P, Ranasinghe S, Tebeje BM, You H. 2020.Schistosomiasis—from immunopathology to vaccines. Semin Immunopathol 42:355–371. 
 19. Meeusen EN, Piedrafita D. 2003. Exploiting natural immunity to helminthparasites for the development of veterinary vaccines. Int J Parasitol 33:1285–1290. 
 20. Tebeje BM, Harvie M, You H, Loukas A, McManus DP. 2016. Schistosomiasis vaccines: where do westand? Parasit Vectors 9:528. 
 21. Nussenzweig RS, Vanderberg J, Most H, Orton C. 1967. Protective immunity produced by the injection of X-irradiated sporozoites of plasmodium berghei. Nature 216:160–162.
 22. Clyde DF, Most H, McCarthy VC, Vanderberg JP. 1973. Immunization ofman against sporozite-induced falciparum malaria. Am J Med Sci 266:169-177. 
 23. Nunes-Cabaco H, Moita D, Prudencio M. 2022. Five decades of clinicalassessment of whole-sporozoite malaria vaccines. Front Immunol 13:977472. 
 24. Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T,Chakravarty S, Gunasekera A, Chattopadhyay R, Li M, Stafford R, AhumadaA, Epstein JE, Sedegah M, Reyes S, Richie TL, Lyke KE, Edelman R, LaurensMB, Plowe CV, Sim BKL. 2010. Development of a metabolically active,nonreplicating sporozoite vaccine to prevent Plasmodium falciparum malaria.Hum Vaccin 6:97-106. 
 25. Sissoko MS, Healy SA, Katile A, Zaidi I, Hu Z, Kamate B, Samake Y, SissokoK, Mwakingwe-Omari A, Lane J, Imeru A, Mohan R, Thera I, Guindo CO,Dolo A, Niare K, Koita F, Niangaly A, Rausch KM, Kc N, Sim BKL, Billingsley PF, Richie TL, Hoffman SL, Doumbo O, Duffy PE. 2022. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmissionseason inMali: a randomised, controlled phase 1 trial. Lancet Infect Dis 22:377–389. 
 26. Jongo SA, Church LWP, Nchama V, Hamad A, Chuquiyauri R, Kassim KR,Athuman T, Deal A, Natasha KC, Mtoro A, Mpina M, Falla CC, Phiri WP, Garcia GA,Maas CD, Nlavo BM, Tanner M, et al. 2022. Multi-dose priming regimensof PfSPZ vaccine: safety and efficacy against controlled human malariainfection in Equatoguinean adults. Am J Trop Med Hyg 106:1215–1226.
 27. Oneko M, Steinhardt LC, Yego R, Wiegand RE, Swanson PA, Kc N, AkachD, Sang T, Gutman JR,Nzuu EL, Dungani A, Kim Lee Sim B, Oloo PN,Otieno K, Bii DK, Billingsley PF, James ER, Kariuki S, Samuels AM, Jongo S,Chebore W, Abdulla S, Daubenberger C, Mpina M, Styers D, Potter GE,
 Abarbanell G, Richie TL, Hoffman SL, Seder RA. 2021. Safety, immunogenicity and efficacy of PfSPZVaccine against malaria in infants in westernKenya: a double-blind, randomized, placebo-controlled phase 2 trial. NatMed 27:1636–1645. 
 28. Mutapi F, Billingsley PF, Secor WE. 2013. Infection and treatment immunizations for successful parasite vaccines. Trends Parasitol 29:135–141.
 29. Bethony JM, Cole RN, Guo X, Kamhawi S, Lightowlers MW, Loukas A,Petri W, Reed S, Valenzuela JG, Hotez PJ. 2011. Vaccines to combat theneglected tropical diseases. Immunol Rev 239:237–270. 
 30. Roestenberg M, Bijker EM, Sim BKL, Billingsley PF, James ER, Bastiaens GJH,Teirlinck AC, Scholzen A, Teelen K, Arens T, van der Ven A, Gunasekera A,Chakravarty S, Velmurugan S, Hermsen CC, Sauerwein RW, Hoffman SL.2013. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg 88:5–13.
 31. Lightowlers MW. 1996. Vaccination against cestode parasites. Int J Parasitol 26:819–824.
 32. Abuzeid AMI, Zhou X, Huang Y, Li G. 2020. Twenty-five-year researchprogress in hookworm excretory/secretory products. Parasit Vectors 13:136. 
 33. Harnett W. 2014. Secretory products of helminth parasites as immunomodulators. Mol BiocheParasitol 195:130–136. 
 34. Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, Millar M,Harcus Y, McSorley HJ, Maizels RM, Buck AH. 2017. Extracellular vesiclesfrom a helminth parasite suppress macrophage activation and constitute an effective vaccine for protective immunity. Cell Rep 19:1545–1557. 
 35. Marcilla A, Trelis M, Cortes A, Sotillo J, Cantalapiedra F, Minguez MT,Valero ML, Sanchez del Pino MM, Munoz-Antoli C, Toledo R, Bernal D.2012. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells.PLoS One 7:e45974. 
 36. Lightowlers MW. 2006. Cestode vaccines: origins, current status andfuture prospects. Parasitology 133(Suppl):S27–S42. 
 37. Carrera-Bravo C, Koh EY, Tan KSW. 2021. The roles of parasite-derivedextracellular vesicles in disease and host-parasite communication. Parasitol Int 83:102373.
 38. Olajide JS, Cai J. 2020. Perils and promises of pathogenic protozoanextracellular vesicles. Front Cell Infect Microbiol 10:371. 
 39. Wang X, Chen J, Zheng J. 2022. The state of the art of extracellular vesicleresearch in protozoan infection. Front Genet 13:941561.
 40. Couper KN, Barnes T, Hafalla JC, Combes V, Ryffel B, Secher T, Grau GE,Riley EM, de Souza JB. 2010. Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation throughpotent macrophage stimulation. PLoS Pathog 6:e1000744. 
 41. Campos FM, Franklin BS, Teixeira-Carvalho A, Filho AL, de Paula SC, FontesCJ, Brito CF, Carvalho LH. 2010. Augmented plasma microparticles during acute Plasmodium vivax infection. Malar J 9:327.
 42. Oliveira ACS, Rezende L, Gorshkov V, Melo-Braga MN, Verano-Braga T,Fernandes-Braga W, Guadalupe JLM, de Menezes GB, Kjeldsen F, deAndrade HM, Andrade LO. 2021. Biological and molecular effects of Trypanosoma cruzi residence in a LAMP-deficient intracellular environment. FrontCell Infect Microbiol 11:788482. 
 43. Wang L, Li Z, Shen J, Liu Z, Liang J, Wu X, Sun X, Wu Z. 2015. Exosomelike vesicles derived bySchistosoma japonicum adult worms mediatesM1 type immune- activity of macrophage. Parasitol Res 114:1865–1873.
 44. Wang L, Yu Z, Wan S, Wu F, Chen W, Zhang B, Lin D, Liu J, Xie H, Sun X,Wu Z. 2017. Exosomes derived from dendritic cells treated with Schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis.Front Pharmacol 8:651.
 45. Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, MartelC, Olivier M. 2016. Leishmania exosomes and other virulence factors:impact on innate immune response and macrophage functions. CellImmunol 309:7-18.
 46. Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, Lynn MA,McMaster WR, Foster LJ, Levings MK, Reiner NE. 2010. Leishmania exosomes modulate innate and adaptive immune responsesthrough effectson monocytes and dendritic cells. J Immunol 185:5011–5022. 
 47. Bennett APS, de la Torre-Escudero E, Oliver NAM, Huson KM, RobinsonMW. 2020. The cellular and molecular origins of extracellular vesiclesreleased by the helminth pathogen, Fasciola hepatica. Int J Parasitol 50:671–683. 
 48. Siles-Lucas M, Sanchez-Ovejero C, Gonzalez-Sanchez M, Gonzalez E,Falcon-Perez JM, Boufana B, Fratini F, Casulli A, Manzano-Roman R. 2017.
 Isolation and characterization of exosomes derived from fertile sheephydatid cysts. Vet Parasitol 236:22–33. 
 49. Eichenberger RM, Sotillo J, Loukas A. 2018. Immunobiology of parasiticworm extracellular vesicles. Immunol Cell Biol 96:704–713. 
 50. Wilson RA, Jones MK. 2021. Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 51:1213–1232. 
 51. Wu Z, Wang L, Li J, Wang L, Wu Z, Sun X. 2018. Extracellular vesicle-mediated communication within host-parasite interactions. Front Immunol 9:3066.
 52. Nascimento IP, Leite LC. 2012. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 45:1102–1111.
 53. Michel ML, Tiollais P. 2010. Hepatitis B vaccines: protective efficacy andtherapeutic potential. Pathol Biol (Paris) 58:288–295. 
 54. Shrestha MP, Scott RM, Joshi DM, Mammen MP, Jr, Thapa GB, Thapa N,
 Myint KS, Fourneau M, Kuschner RA, Shrestha SK, David MP, SeriwatanaJ, Vaughn DW, Safary A, Endy TP, Innis BL. 2007. Safety and efficacy of arecombinant hepatitis E vaccine. N Engl J Med 356:895–903. 
 55. Noon JB, Aroian RV. 2017. Recombinant subunit vaccines for soil-transmitted helminths. Parasitology 144:1845–1870. 
 56. Perez O, Batista-Duharte A, Gonzalez E, Zayas C, Balboa J, Cuello M, CabreraO, Lastre M, Schijns VE. 2012. Human prophylactic vaccine adjuvants andtheir determinant role in new vaccine formulations. Braz J Med Biol Res 45:681–692. 
 57. Stephenson R, You H, McManus DP, Toth I. 2014. Schistosome vaccineadjuvants in preclinical and clinical research. Vaccines (Basel) 2:654–685.
 58. Laurens MB. 2020. RTS,S/AS01 vaccine (Mosquirix): an overview. Hum VaccinImmunother 16:480–489. 
 59. King A. 2019. Building a better malaria vaccine. Nature 575:S51–S54.
 60. RTS,S Clinical Trials Partnership. 2015. Efficacy and safety of RTS,S/AS01malaria vaccine with or without a booster dose in infants and children inAfrica: final results of a phase 3, individually randomised, controlled trial.Lancet 386:31–45. 
 61. Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN,Wiersma J, Arens T, Beckers P, van Gemert G, van de Vegte-Bolmer M,van der Ven AJ, Luty AJ, Hermsen CC, Sauerwein RW. 2011. Long-term protection against malaria after experimental sporozoite inoculation: anopen-label follow-up study. Lancet 377:1770–1776. 
 62. Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP,Conzelmann C, Methogo BGNO, Doucka Y, Flamen A, Mordmüller B,Issifou S, Kremsner PG, Sacarlal J, Aide P, Lanaspa M, Aponte JJ,Nhamuave A, Quelhas D, Bassat Q, Mandjate S, Macete E, Alonso P,Abdulla S, Salim N, Juma O, Shomari M, Shubis K, Machera F, Hamad AS,Minja R, Mtoro A, Sykes A, Ahmed S, Urassa AM, Ali AM, Mwangoka G,Tanner M, Tinto H, D’Alessandro U, Sorgho H, Valea I, Tahita MC, Kaboré
 W, Ouédraogo S, Sandrine Y, Guiguemdé RT, Ouédraogo JB, Hamel MJ,Kariuki S, Odero C. RTS,S Clinical Trials Partnership, et al. 2011. Firstresults of phase 3 trial of RTS,S/AS01 malaria vaccine in African children.N Engl J Med 365:1863–1875.
 63. Johnson KS, Harrison GB, Lightowlers MW, O’Hoy KL, Cougle WG,Dempster RP, Lawrence SB, Vinton JG, Heath DD, Rickard MD. 1989. Vaccination against ovine cysticercosis using a definedrecombinant antigen. Nature 338:585–587. 
 64. Lightowlers MW, Rolfe R, Gauci CG. 1996. Taenia saginata: vaccinationagainst cysticercosis in cattle with recombinant oncosphere antigens.Exp Parasitol 84:330–338. 
 65. Flisser A, Gauci CG, Zoli A, Martinez-Ocana J, Garza-Rodriguez A,Dominguez-Alpizar JL, Maravilla P, Rodriguez-Canul R, Avila G, AguilarVega L, Kyngdon C, Geerts S, Lightowlers MW. 2004. Induction of protection against porcine cysticercosis by vaccination with recombinantoncosphere antigens. Infect Immun 72:5292–5297. 
 66. Gonzalez AE, Gauci CG, Barber D, Gilman RH, Tsang VC, Garcia HH,Verastegui M, Lightowlers MW. 2005. Vaccination of pigs to controlhuman neurocysticercosis. Am J Trop Med Hyg 72:837–839.
 67. Heath DD, Lawrence SB. 1996. Antigenic polypeptides of Echinococcus granulosus oncospheres and definition of protective molecules. Parasite Immunol 18:347–357. 
 68. King A. 2019. Only vaccines can eradicate parasitic worms. Nature 575:S54. 
 69. Diemert D, Campbell D, Brelsford J, Leasure C, Li G, Peng J, Zumer M,Younes N, Bottazzi ME, Mejia R, Pritchard DI, Hawdon JM, Bethony JM.2018. Controlled human hookworm infection: accelerating human hookworm vaccine development. Open Forum Infect Dis 5:ofy083.
 70. Diemert DJ, Freire J, Valente V, Fraga CG, Talles F, Grahek S, Campbell D,Jariwala A, Periago MV, Enk M, Gazzinelli MF, Bottazzi ME, Hamilton R,Brelsford J, Yakovleva A, Li G, Peng J, Correa-Oliveira R, Hotez P, BethonyJ. 2017. Safety and immunogenicity of the Na-GST-1 hookworm vaccine
 in Brazilian and American adults. PLoS Negl Trop Dis 11:e0005574.
 71. Boulanger D, Warter A, Sellin B, Lindner V, Pierce RJ, Chippaux JP,Capron A. 1999. Vaccine potential of a recombinant glutathione S-transferase cloned from Schistosoma haematobium in primates experimentally infected with an homologous challenge. Vaccine 17:319–326.
 72. Riveau G, Schacht AM, Dompnier JP, Deplanque D, Seck M, Waucquier N,Senghor S, Delcroix-Genete D, Hermann E, Idris-Khodja N, Levy-MarchalC, Capron M, Capron A. 2018. Safety and efficacy of the rSh28GST urinaryschistosomiasis vaccine: a phase 3 randomized, controlled trial in Senegalese children. PLoS Negl Trop Dis 12:e0006968. 
 73. Santini-Oliveira M, Coler RN, Parra J, Veloso V, Jayashankar L, Pinto PM,Ciol MA, Bergquist R, Reed SG, Tendler M. 2016. Schistosomiasis vaccinecandidate Sm14/GLA-SE: phase 1 safety and immunogenicity clinical trialin healthy, male adults. Vaccine 34:586–594. 
 74. Keitel WA, Potter GE, Diemert D, Bethony J, El Sahly HM, Kennedy JK, PatelSM, Plieskatt JL, Jones W, Deye G, Bottazzi ME, Hotez PJ, Atmar RL. 2019. Aphase 1 study of the safety, reactogenicity, and immunogenicity of a Schistosoma mansoni vaccine with or without glucopyranosyl lipid A aqueous formulation (GLA-AF) in healthy adults from a non-endemic area. Vaccine37:6500-6509. 
 75. Panzner U, Excler J-L, Marks F, Siddiqui AA. 2021. Recentadvances and methodological considerations on vaccine candidates forhuman schistosomiasis. Front Trop Dis 2. 
 76. Camargo EP, Gazzinelli RT, Morel CM, Precioso AR. 2022. Why do we stillhave not a vaccine against Chagas disease? Mem Inst Oswaldo Cruz 117:e200314. 
 77. Versteeg L, Almutairi MM, Hotez PJ, Pollet J. 2019. Enlisting the mRNAvaccine platform to combat parasitic infections. Vaccines 7:122. 
 78. Zhan B, Bottazzi ME, Hotez PJ, Lustigman S. 2022. Advancing a humanonchocerciasis vaccine from antigen discovery to efficacy studies againstnatural infection of cattle with Onchocerca ochengi. Front Cell InfectMicrobiol 12:869039. 
 79. McManus DP. 2020. Recent progress in the development of liver flukeand blood fluke vaccines. Vaccines (Basel) 8:553. 
 80. Chaiyadet S, Sotillo J, Krueajampa W, Thongsen S, Brindley PJ, Sripa B,Loukas A, Laha T. 2019. Vaccination of hamsters with Opisthorchis viverrini extracellular vesicles and vesicle-derived recombinanttetraspaninsinduces antibodies that block vesicle uptake by cholangiocytes andreduce parasite burden after challenge infection. PLoS Negl Trop Dis 13:e0007450. 
 81. Thi Phung L, Chaiyadet S, Hongsrichan N, Sotillo J, Dinh Thi Dieu H,Quang Tran C, Brindley PJ, Loukas A, Laha T. 2020. Partial protection witha chimeric tetraspanin-leucine aminopeptidase subunit vaccine againstOpisthorchis viverrini infection in hamsters. Acta Trop 204:105355.
 82. Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, Luo F, Guo L, Lv X, DengC, Zhou C, Fan Y, Li X, Huang L, Hu Y, Liang C, Hu X, Xu J, Yu X. 2011. Thedraft genome of the carcinogenic human liver fluke Clonorchis sinensis.Genome Biol 12:R107.
 83. Wang D, Korhonen PK, Gasser RB, Young ND. 2018. Improved genomicresources and new bioinformatic workflow for the carcinogenic parasiteClonorchis sinensis: biotechnological implications. Biotechnol Adv 36:894-904. 
 84. Qian MB, Utzinger J, Keiser J, Zhou XN. 2016. Clonorchiasis. Lancet 387:800–810. 
 85. Ulmer JB, Liu MA. 2021. Path to success and future impact of nucleic acidvaccines: DNA and mRNA. Mol Front J 5:38–57. 
 86. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL.1990. Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468. 
 87. Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ,Gromkowski SH, Deck RR, DeWitt CM, Friedman A. 1993. Heterologousprotection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749. 
 88. Gary EN, Weiner DB. 2020. DNA vaccines: prime time is now. Curr OpinImmunol 65:21–27. 
 89. Tebas P, Roberts CC, Muthumani K, Reuschel EL, Kudchodkar SB, Zaidi FI,White S, Khan AS, Racine T, Choi H, Boyer J, Park YK, Trottier S, RemigioC, Krieger D, Spruill SE, Bagarazzi M, Kobinger GP, Weiner DB, Maslow JN.2021. Safety and Immunogenicity of an anti-Zika virus DNA vaccine. N Engl J Med 385:e35. 
 90. Tebas P, Kraynyak KA, Patel A, Maslow JN, Morrow MP, Sylvester AJ,Knoblock D, Gillespie E, Amante D, Racine T, McMullan T, Jeong M,Roberts CC, Park YK, Boyer J, Broderick KE, Kobinger GP, Bagarazzi M,Weiner DB, Sardesai NY, White SM. 2019. Intradermal SynCon(R) Ebola
 GP DNA vaccine is temperature stable and safely demonstrates cellularand humoral immunogenicity advantages in healthy volunteers. J InfectDis 220:400–410. 
 91. Li Y, Bi Y, Xiao H, Yao Y, Liu X, Hu Z, Duan J, Yang Y, Li Z, Li Y, Zhang H, Ding C,Yang J, Li H, He Z, Liu L, Hu G, Liu S, Che Y, Wang S, Li Q, Lu S, Cun W. 2021. Anovel DNA and protein combination COVID-19 vaccine formulation providesfull protection against SARS-CoV-2 in rhesus macaques. Emerg Microbes Infect10:342–355. 
 92. Motamedi H, Ari MM, Dashtbin S, Fathollahi M, Hossainpour H, AlvandiA, Moradi J, Abiri R. 2021. An update review of globally reported SARSCoV-2 vaccines in preclinical and clinical stages. Int Immunopharmacol96:107763. 
 93. Sheridan C. 2021. First COVID-19 DNA vaccine approved, others in hotpursuit. Nat Biotechnol 39:1479–1482. 
 94. Khobragade A, Bhate S, Ramaiah V, Deshpande S, Giri K, Phophle H, SupeP, Godara I, Revanna R, Nagarkar R, Sanmukhani J, Dey A, RajanathanTMC, Kansagra K, Koradia P. ZyCo VDpSIG. 2022. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlledstudy in India. Lancet 399:1313–1321. https://doi.org/10.1016/S0140-6736(22)00151-9.
 95. Abbasi J. 2021. India’s New COVID-19 DNA vaccine for adolescents andadults is a first. JAMA 326:1365. https://doi.org/10.1001/jama.2021.16625.
 96. Thorarinsson R, Wolf JC, Inami M, Phillips L, Jones G, Macdonald AM,Rodriguez JF, Sindre H, Skjerve E, Rimstad E, Evensen O. 2021. Effect of anovel DNA vaccine against pancreas disease causedby salmonid alphavirus subtype 3 in Atlantic salmon (Salmo salar). Fish Shellfish Immunol
 108:116–126. 
 97. Penny MA, Camponovo F, Chitnis N, Smith TA, Tanner M. 2020. Futureuse-cases of vaccines in malaria control and elimination. Parasite Epidemiol Control 10:e00145.
 98. Luo K, Zhang H, Zavala F, Biragyn A, Espinosa DA, Markham RB. 2014. Fusionof antigen to a dendritic cell targeting chemokine combined with adjuvantyields a malaria DNA vaccine with enhanced protective capabilities. PloSOne 9:e90413. 
 99. Martinez-Rodrigo A, D SD, Ribeiro PAF, Roatt BM, Mas A, Carrion J,Coelho EAF, Dominguez-Bernal G. 2019. Immunization with the HisAK70DNA vaccine induces resistance against Leishmania amazonensis infection in BALB/c mice. Vaccines (Basel) 7:183. 
 100. Wisniewski M, Jaros S, Bąska P, Cappello M, Długosz E, Wędrychowicz H.2016. Hamsters vaccinated with Ace-mep-7 DNA vaccine produced protective immunity against Ancylostoma ceylanicum infection. Exp Parasitol 163:1–7. 
 101. Li MJ, Lei JH, Wang T, Lu SJ, Guan F, Liu WQ, Li YL. 2011. Cimetidineenhances the protective effect of GST DNA vaccine against Schistosomajaponicum. Exp Parasitol 128:427–432. 
 102. Williams GM, Li YS, Gray DJ, Zhao ZY, Harn DA, Shollenberger LM, Li SM,Yu X, Feng Z, Guo JG, Zhou J, Dong YL, Li Y, Guo B, Driguez P, Harvie M,You H, Ross AG, McManus DP. 2019. Field testing integrated interventions for schistosomiasis elimination in the People’s Republic of China:outcomes of a multifactorial cluster. Front Immunol 10:645.
 103. Steisslinger V, Korten S, Brattig NW, Erttmann KD. 2015. DNA vaccineencoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partialprotection in a mouse model of human filariasis. Vaccine 33:5861–5867.
 104. Kutzler MA, Weiner DB. 2008. DNA vaccines: ready for prime time? NatRev Genet 9:776–788. 
 105. Belakova J, Horynova M, Krupka M, Weigl E, Raska M. 2007. DNA vaccines:are they still just a powerful tool for the future? Arch Immunol Ther Exp(Warsz) 55:387–398. 
 106. Radosevic K, Rodriguez A, Lemckert A, Goudsmit J. 2009. Heterologousprime-boost vaccinations for poverty-related diseases: advantages andfuture prospects. Expert Rev Vaccines 8:577–592.
 107. Saade F, Petrovsky N. 2012. Technologies for enhanced efficacy of DNA vaccines. Expert RevVaccines 11:189–209. 
 108. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL,Perez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, RoychoudhuryS, Koury K, Li P, Kalina WV, Cooper D, Frenck RW, Jr, Hammitt LL, Tureci O,Nell H, Schaefer A, Unal S, Tresnan DB, Mather S, Dormitzer PR, Sahin U,Jansen KU, Gruber WC. C4591001 Clinical Trial Group. 2020. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383:2603–2615. 
 109. Pardi N, Hogan MJ, Porter FW, Weissman D. 2018. mRNA vaccines - anew era in vaccinology. Nat Rev Drug Discov 17:261–279. 
 110. Mallory KL, Taylor JA, Zou X, Waghela IN, Schneider CG, Sibilo MQ,Punde NM, Perazzo LC, Savransky T, Sedegah M, Dutta S, Janse CJ, PardiN, Lin PJC, Tam YK, Weissman D, Angov E. 2021. Messenger RNA expressing PfCSP induces functional, protective immune responses againstmalaria in mice. NPJ Vaccines 6:84. 
 111. Baeza Garcia A, Siu E, Sun T, Exler V, Brito L, Hekele A, Otten G, AugustijnK, Janse CJ, Ulmer JB, Bernhagen J, Fikrig E, Geall A, Bucala R. 2018. Neutralization of the Plasmodium-encoded MIF ortholog confers protectiveimmunity against malaria infection. Nat Commun 9:2714. 
 112. Duthie MS, Van Hoeven N, MacMillen Z, Picone A, Mohamath R, ErasmusJ, Hsu F-C, Stinchcomb DT, Reed SG. 2018. Heterologous immunizationwith defined RNA and subunit vaccines enhances T cell responses thatprotect against Leishmania donovani. Front Immunol 9:2420–2420.
 113. Luo F, Zheng L, Hu Y, Liu S, Wang Y, Xiong Z, Hu X, Tan F. 2017. Inductionof protective immunity against Toxoplasma gondii in mice by nucleoside triphosphate hydrolase-II (NTPase-II) self-amplifyingRNA vaccineencapsulated in lipid nanoparticle (LNP). Front Microbiol 8:605–605.
 114. Sajid A, Matias J, Arora G, Kurokawa C, DePonte K, Tang X, Lynn G, WuMJ, Pal U, Strank NO, Pardi N, Narasimhan S, Weissman D, Fikrig E. 2021.mRNA vaccination induces tick resistance and prevents transmission ofthe Lyme disease agent. Sci Transl Med 13:eabj9827. 
 115. Kariko K, Buckstein M, Ni H, Weissman D. 2005. Suppression of RNA recognition by Toll-likereceptors: the impact of nucleoside modificationand the evolutionary origin of RNA. Immunity 23:165–175. 
 116. Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, AlgarniA, Al-Wassiti H, DavisTP, Pouton CW, Kent SJ, Truong NP. 2021. Frominfluenza to COVID-19: lipid nanoparticle mRNA vaccines at the frontiersof infectious diseases. Acta Biomater 131:16–40. 
 117. Chaudhary N, Weissman D, Whitehead KA. 2021. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat RevDrug Discov 20:817–838. 
 118. Dolgin E. 2021. The tangled history of mRNA vaccines. Nature 597:318–324. 
 119. Rinaldi A. 2020. RNA to the rescue: RNA is one of the most promising targets for drug development given its wide variety of uses. EMBO Rep 21:e51013. 
 120. Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. 2020. Thepromise of mRNA vaccines: a biotech and industrial perspective. NPJVaccines 5:11. 
 121. Huang Q, Ji K, Tian S, Wang F, Huang B, Tong Z, Tan S, Hao J, Wang Q,Tan W, Gao GF, Yan J. 2021. A single-dose mRNA vaccine provides along-term protection for hACE2 transgenic mice from SARS-CoV-2. NatCommun 12:776. 
 122. Flemming A. 2012. Vaccines: self-amplifying RNA in lipid nanoparticles:a next-generation vaccine? Nat Rev Drug Discov 11:748–749.
 123. Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. 2021. mRNA vaccine: apotential therapeutic strategy. Mol Cancer 20:33. 
 124. Liehl P, Zuzarte-Luis V, Chan J, Zillinger T, Baptista F, Carapau D, KonertM, Hanson KK, Carret C, Lassnig C, Muller M, Kalinke U, Saeed M, ChoraAF, Golenbock DT, Strobl B, Prudencio M, Coelho LP, Kappe SH, SupertiFurga G, Pichlmair A, Vigario AM, Rice CM, Fitzgerald KA, Barchet W,Mota MM. 2014. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat Med 20:47–53. 
 125. Jain A, Irizarry-Caro RA, McDaniel MM, Chawla AS, Carroll KR, OvercastGR, Philip NH, Oberst A, Chervonsky AV, Katz JD, Pasare C. 2020. T cellsinstruct myeloid cells to produce inflammasome-independent IL-1betaand cause autoimmunity. Nat Immunol 21:65–74. https://doi.org/10
 .1038/s41590-019-0559-y.
 126. Ablasser A, Poeck H, Anz D, Berger M, Schlee M, Kim S, Bourquin C,Goutagny N, Jiang Z, Fitzgerald KA, Rothenfusser S, Endres S, HartmannG, Hornung V. 2009. Selection of molecular structure and delivery ofRNA oligonucleotides to activate TLR7 versus TLR8 and to induce highamounts of IL-12p70 in primary human monocytes. J Immunol 182:6824–6833. 
 127. Chen N, Xia P, Li S, Zhang T, Wang TT, Zhu J. 2017. RNA sensors of theinnate immune system and their detection of pathogens. IUBMB Life 69:297–304. 
 128. Kato H, Oh SW, Fujita T. 2017. RIG-I-like receptors and type I interferonopathies. J Interferon Cytokine Res 37:207–213. 
 129. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 2001. Recognition ofdouble-stranded RNA and activation of NF-kappaB by Toll-like receptor3. Nature 413:732–738. 
 130. Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, XiangY, Bose S. 2009. Activation of innate immune antiviral responses byNod2. Nat Immunol 10:1073–1080. 
 131. Kariko K, Muramatsu H, Ludwig J, Weissman D. 2011. Generating theoptimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encodingmRNA. Nucleic Acids Res 39:e142. 
 132. Avci-Adali M, Behring A, Steinle H, Keller T, Krajeweski S, Schlensak C,Wendel HP. 2014. In vitro synthesis of modified mRNA for induction ofprotein expression in human cells. J Vis Exp 2014:e51943. 
 133. Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L,Moody MA, Verkerke HP, Myles A, Willis E, LaBranche CC, Montefiori DC,Lobby JL, Saunders KO, Liao HX, Korber BT, Sutherland LL, Scearce RM,Hraber PT, Tombacz I, Muramatsu H, Ni H, Balikov DA, Li C, Mui BL, Tam
 YK, Krammer F, Kariko K, Polacino P, Eisenlohr LC, Madden TD, Hope MJ,Lewis MG, Lee KK, Hu SL, Hensley SE, Cancro MP, Haynes BF, WeissmanD. 2018. Nucleoside-modified mRNA vaccines induce potent T follicularhelper and germinal center B cell responses. J Exp Med 215:1571–1588.
 134. Basso K, Dalla-Favera R. 2015. Germinal centres and B cell lymphomagenesis. Nat Rev Immunol 15:172–184. 
 135. Heyman B. 2000. Regulation of antibody responses via antibodies, complement, and Fc receptors.Annu Rev Immunol 18:709–737.
 136. Tam HH, Melo MB, Kang M, Pelet JM, Ruda VM, Foley MH, Hu JK, KumariS, Crampton J, Baldeon AD, Sanders RW, Moore JP, Crotty S, Langer R,Anderson DG, Chakraborty AK, Irvine DJ. 2016. Sustained antigen availability during germinal center initiation enhances antibody responses tovaccination. Proc Natl Acad Sci U S A 113:E6639–E6648. 
 137. Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng W, Rosenfeld AM,Lundgreen KA, Reynaldi A, Khoury DS, Pattekar A, Gouma S, Kuri-CervantesL, Hicks P, Dysinger S, Hicks A, Sharma H, Herring S, Wherry EJ, et al. 2021. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 374:abm0829. 
 138. Cao Y, Gao GF. 2021. mRNA vaccines: a matter of delivery. EClinicalMedicine 32:100746.
 139. Armbruster N, Jasny E, Petsch B. 2019. Advances in RNA vaccines for preventive indications: a casestudy of a vaccine against rabies. Vaccines(Basel) 7:132. 
 140. Jouneau L, Lefebvre DJ, Costa F, Romey A, Blaise-Boisseau S, Relmy A,Jaszczyszyn Y, Dard-Dascot C, Dejean S, Versille N, Guitton E, Hudelet P,Curet M, De Clercq K, Bakkali-Kassimi L, Zientara S, Klonjkowski B,Schwartz-Cornil I. 2020. The antibody response induced FMDV vaccines
 in sheep correlates with early transcriptomic responses in blood. NPJVaccines 5:1. 
 141. Sullenger BA, Nair S. 2016. From the RNA world to the clinic. Science352:1417–1420. 
 142. Pollard C, De Koker S, Saelens X, Vanham G, Grooten J. 2013. Challengesand advances towards the rational design of mRNA vaccines. TrendsMol Med 19:705–713. 
 143. Espeseth AS, Cejas PJ, Citron MP, Wang D, DiStefano DJ, Callahan C,Donnell GO, Galli JD, Swoyer R, Touch S, Wen Z, Antonello J, Zhang L, FlynnJA, Cox KS, Freed DC, Vora KA, Bahl K, Latham AH, Smith JS, Gindy ME,Ciaramella G, Hazuda D, Shaw CA, Bett AJ. 2020. Modified mRNA/lipidnanoparticle-based vaccines expressing respiratory syncytial virus F proteinvariants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines 5:16. 
 144. Jia B, Jeon CO. 2016. High-throughput recombinant protein expressionin Escherichia coli: current status and future perspectives. Open Biol 6:160196. 
 145. Kim SC, Sekhon SS, Shin WR, Ahn G, Cho BK, Ahn JY, Kim YH. 2022. Modifications of mRNAvaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol 18:1–8. 
 146. Laczko D, Hogan MJ, Toulmin SA, Hicks P, Lederer K, Gaudette BT,Castano D, Amanat F, Muramatsu H, Oguin TH, III, Ojha A, Zhang L, Mu Z,Parks R, Manzoni TB, Roper B, Strohmeier S, Tombacz I, Arwood L,Nachbagauer R, Kariko K, Greenhouse J, Pessaint L, Porto M, PutmanTaylor T, Strasbaugh A, Campbell TA, Lin PJC, Tam YK, Sempowski GD,Farzan M, Choe H, Saunders KO, Haynes BF, Andersen H, Eisenlohr LC,Weissman D, Krammer F, Bates P, Allman D, Locci M, Pardi N. 2020. A single immunization with nucleoside-modified mRNA vaccines elicitsstrong cellular and humoral immune responses against SARS-CoV-2 inmice. Immunity 53:724–732.E7.
 147. Zeng C, Zhang C, Walker PG, Dong Y. 2020. Formulation and deliverytechnologies for mRNA vaccines. Current Topics in Microbiology andImmunology. Springer, Berlin, Heidelberg. 
 148. Callaway E, Ledford H. 2021. How to redesign COVID vaccines so theyprotect against variants. Nature 590:15–16. 
 149. Chivukula S, Plitnik T, Tibbitts T, Karve S, Dias A, Zhang D, Goldman R,Gopani H, Khanmohammed A, Sarode A, Cooper D, Yoon H, Kim Y, YanY, Mundle ST, Groppo R, Beauvais A, Zhang J, Anosova NG, Lai C, Li L,Ulinski G, Piepenhagen P, DiNapoli J, Kalnin KV, Landolfi V, SwearingenR, Fu TM, DeRosa F, Casimiro D. 2021. Development of multivalentmRNA vaccine candidates for seasonal or pandemic influenza. NPJ Vaccines 6:153. 
 150. Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. 2020. Opportunities and challenges in thedelivery of mRNA-based vaccines. Pharmaceutics 12:102.
 151. Liu T, Liang Y, Huang L. 2021. Development and delivery systems ofmRNA vaccines. Front Bioeng Biotechnol 9:718753. 
 152. Pardi N, Hogan MJ, Weissman D. 2020. Recent advances in mRNA vaccine technology. Curr OpinImmunol 65:14–20. 
 153. Hou X, Zaks T, Langer R, Dong Y. 2021. Lipid nanoparticles for mRNAdelivery. Nat Rev Mater 6:1078–1094. 
 154. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D,Spector SA, Rouphael N, Creech CB, Zhou H, HanS, Ivarsson M, Miller J, Zaks T. COVE Study Group. 2021. Efficacy andsafety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384:403–416. 
 155. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, MakheneM, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott AB,Flach B, Lin BC, Doria-Rose NA, O’Dell S, Schmidt SD, Corbett KS,Swanson PA, II, Padilla M, Neuzil KM, Bennett H, Leav B, Makowski M,Albert J, Cross K,Edara VV, Floyd K, Suthar MS, Martinez DR, Baric R,Buchanan W, Luke CJ, Phadke VK, Rostad CA, Ledgerwood JE, GrahamBS, Beigel JH. mRNA-1273 Study Group. 2020. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 383:2427–2438. 
 156. Schlake T, Thess A, Fotin-Mleczek M, Kallen K-J. 2012. DevelopingmRNA-vaccine technologies. RNA Biol 9:1319–1330. 
 157. de Jong S, Chikh G, Sekirov L, Raney S, Semple S, Klimuk S, Yuan N, HopeM, Cullis P, Tam Y. 2007. Encapsulation in liposomal nanoparticlesenhances the immunostimulatory, adjuvant and anti-tumor activity ofsubcutaneously administered CpG ODN. Cancer Immunol Immunother56:1251–1264. 
 158. Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. 2016.mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 7:319–334.
 159. CDC COVID-19 Response Team, Food and Drug Administration. 2020.Allegic reactions including anaphylaxis after receipt of the first dose ofPfizer-BioNTech COVID-19 vaccine—United States, December 14-23,2020. MMWR Morb Mortal Wkly Rep 70:46–51. 
 160. Kadali RAK, Janagama R, Peruru S, Malayala SV. 2021. Side effects ofBNT162b2 mRNA COVID-19 vaccine: a randomized, cross-sectional studywith detailed self-reported symptoms from healthcare workers. Int JInfect Dis 106:376–381. 
 161. Banerji A, Wickner PG, Saff R, Stone CA, Jr, Robinson LB, Long AA,Wolfson AR, Williams P, Khan DA, Phillips E, Blumenthal KG. 2021. mRNAvaccines to prevent COVID-19 disease and reported allergic reactions:current evidence and suggested approach. J Allergy Clin Immunol Pract
 9:1423–1437. 
 162. Knop K, Hoogenboom R, Fischer D, Schubert US. 2010. Poly(ethylene glycol) in drug delivery: prosand cons as well as potential alternatives. AngewChem Int Ed Engl 49:6288–6308. 
 163. Yang Q, Lai SK. 2015. Anti-PEG immunity: emergence, characteristics,and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:655–677. 
 164. Abu Lila AS, Kiwada H, Ishida T. 2013. The accelerated blood clearance(ABC) phenomenon: clinical challenge and approaches to manage. J Control Release 172:38–47.
 165. Rauch S, Jasny E, Schmidt KE, Petsch B. 2018. New vaccine technologiesto combat outbreak situations. Front Immunol 9:1963.
 166. Crommelin DJA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E.2021. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci110:997–1001. 
 167. Wei-Haas M. 2021. Future COVID-19 vaccines might not have to be kept socold. https://www.nationalgeographic.com/science/article/future-covid-19-vaccines-might-not-have-to-be-kept-so-cold.Accessed 1 May 2021.
 168. Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, OttenGR, Brazzoli M, Buccato S, Bonci A, Casini D, Maione D, Qi Z-Q, Gill JE,Caiazza NC, Urano J, Hubby B, Gao GF, Shu Y, De Gregorio E, Mandl CW,Mason PW, Settembre EC, Ulmer JB, Craig Venter J, Dormitzer PR,
 Rappuoli R, Geall AJ. 2013. Rapidly produced SAM() vaccine againstH7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2:e52.
 169. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T,Thess A, Kallen K-J, Stitz L, Kramps T. 2012. Protective efficacy of in vitrosynthesized, specific mRNA vaccines against influenza A virus infection.Nat Biotechnol 30:1210–1216. 
 170. Dolgin E. 2021. mRNA flu shots move into trials. Nat Rev Drug Discov 20: 801–803. 
 171. Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, DowdKA, Sutherland LL, Scearce RM, Parks R, Wagner W, Granados A,Greenhouse J, Walker M, Willis E, Yu J-S, McGee CE, Sempowski GD, Mui BL,Tam YK, Huang Y-J, Vanlandingham D, Holmes VM, Balachandran H, Sahu
 S, Lifton M, Higgs S, Hensley SE, Madden TD, Hope MJ, Karikó K, Santra S,Graham BS, Lewis MG, Pierson TC, Haynes BF, Weissman D. 2017. Zika virusprotection by a single low-dose nucleoside-modified mRNA vaccination.Nature 543:248–251. 
 172. Erasmus JH, Archer J, Fuerte-Stone J, Khandhar AP, Voigt E, Granger B,Bombardi RG, Govero J, Tan Q, Durnell LA, Coler RN, Diamond MS, CroweJE, Jr, Reed SG, Thackray LB, Carnahan RH, Van Hoeven N. 2020. Intramuscular delivery of replicon RNA encoding ZIKV-117 human monoclonal antibody protects against Zika virus infection. Mol Ther Methods Clin Dev 18:402–414. 
 173. Kose N, Fox JM, Sapparapu G, Bombardi R, Tennekoon RN, de Silva AD,Elbashir SM, Theisen MA, Humphris-Narayanan E, Ciaramella G, HimansuS, Diamond MS, Crowe JE, Jr. 2019. A lipid-encapsulated mRNA encodinga potently neutralizing human monoclonal antibody protects againstchikungunya infection. Sci Immunol 4:eaaw6647. 
 174. Fernandez E, Diamond MS. 2017. Vaccination strategies against Zika virus.Curr Opin Virol 23:59–67.
 175. Pattnaik A, Sahoo BR, Pattnaik AK. 2020. Current status of Zika virus vaccines: successes andchallenges. Vaccines (Basel) 8:266. 
 176. Morris L. 2021. mRNA vaccines offer hope for HIV. Nat Med 27:2082–2084.
 
 
 177. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V,Tadmor AD, Luxemburger U, Schrors B, Omokoko T, Vormehr M, AlbrechtC, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Muller F, Ortseifer I,Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C,Suchan M,Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, BruckAK, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, DikenM, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, Holler C, Utikal J, Huber C,Loquai C, Tureci O. 2017. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226.
 178. Schumacher TN, Schreiber RD. 2015. Neoantigens in cancer immunotherapy. Science 348:69–74. 
 179. Miao L, Zhang Y, Huang L. 2021. mRNA vaccine for cancer immunotherapy. Mol Cancer 20:41. 
 180. Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, SidikSM, Lourido S, Langer R, Bavari S, Ploegh HL, Anderson DG. 2016. Dendrimer-RNA nanoparticles generate protective immunity against lethalEbola, H1N1 influenza, and Toxoplasma gondii challenges with a singledose. Proc Natl Acad Sci U S A 113:E4133–E4142. 
 181. Eisen RJ, Eisen L. 2018. The blacklegged tick, Ixodes scapularis: anincreasing public health concern. Trends Parasitol 34:295–309. 
 182. You H, Gobert GN, Jones MK, Zhang W, McManus DP. 2011. Signallingpathways and the host-parasite relationship: putative targets for controlinterventions against schistosomiasis: signalling pathways and futureanti-schistosome therapies. Bioessays 33:203–214. 
 183. You H, Stephenson RJ, Gobert GN, McManus DP. 2014. Revisiting glucose uptake and metabolism in schistosomes: new molecular insightsfor improved schistosomiasis therapies. Front Genet 5:176. 
 184. You H, Cai P, Tebeje BM, Li Y, McManus DP. 2018. Schistosome vaccinesfor domestic animals. Trop Med Infect Dis 3:68. 
 185. Schistosoma japonicum Genome S, Functional Analysis C. 2009. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460:345–351. 
 186. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC,Mashiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA,Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA,Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y,Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA,Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP,Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream M-A,
 Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL,Wortman J, et al. 2009. The genome of the blood fluke Schistosoma mansoni. Nature 460:352–358. 
 187. Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, Li Y, Cantacessi C, Hall RS,Xu X, Chen F, Wu X, Zerlotini A, Oliveira G, Hofmann A, Zhang G, Fang X,Kang Y, Campbell BE, Loukas A, Ranganathan S, Rollinson D, Rinaldi G,Brindley PJ, Yang H, Wang J, Wang J, Gasser RB. 2012. Whole-genomesequence of Schistosoma haematobium. Nat Genet 44:221–225. 
 188. Oey H, Zakrzewski M, Gravermann K, Young ND, Korhonen PK, GobertGN, Nawaratna S, Hasan S, Martinez DM, You H, Lavin M, Jones MK,Ragan MA, Stoye J, Oleaga A, Emery AM, Webster BL, Rollinson D, GasserRB, McManus DP, Krause L. 2019. Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridizationwith S. haematobium. PLoS Pathog 15:e1007513.
 189. Wendt GR, Collins JN, Pei J, Pearson MS, Bennett HM, Loukas A, BerrimanM, Grishin NV, Collins JJ, III. 2018. Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors in Schistosoma mansoni. Elife 7:e33221. 
 190. King M, Carson J, Stewart MT, Gobert GN. 2021. Revisiting the Schistosoma japonicum life cycle transcriptome for new insights into lung schistosomula development. Exp Parasitol 223:108080.
 191. Pearson MS, McManus DP, Smyth DJ, Lewis FA, Loukas A. 2005. In vitro andin silico analysis of signal peptides from the human blood fluke, Schistosoma mansoni. FEMS Immunol Med Microbiol 45:201–211.
 192. De Marco Verissimo C, Potriquet J, You H, McManus DP, Mulvenna J, JonesMK. 2019. Qualitative and quantitative proteomic analyses of Schistosomajaponicum eggs and egg-derived secretory-excretory proteins. Parasit Vectors 12:173. 
 193. Carson JP, Robinson MW, Hsieh MH, Cody J, Le L, You H, McManus DP,Gobert GN. 2020. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol Biochem Parasitol 240:111322. 
 194. Pearson MS, Tedla BA, Becker L, Nakajima R, Jasinskas A, Mduluza T,Mutapi F, Oeuvray C, Greco B, Sotillo J, Felgner PL, Loukas A. 2021.Immunomics-guided antigen discovery for praziquantel-induced vaccination in urogenital human schistosomiasis. Front Immunol 12:663041.
 195. de Assis RR, Ludolf F, Nakajima R, Jasinskas A, Oliveira GC, Felgner PL, GazeST, Loukas A, LoVerde PT, Bethony JM, Correa-Oliveira R, Calzavara-Silva CE.2016. A next-generation proteome array for Schistosoma mansoni. Int J Parasitol 46:411–415.
 196. Kifle DW, Chaiyadet S, Waardenberg AJ, Wise I, Cooper M, Becker L,Doolan DL, Laha T, Sotillo J, Pearson MS, Loukas A. 2020. Uptake of Schistosoma mansoni extracellular vesicles by humanendothelial and monocytic cell lines and impact on vascular endothelial cell geneexpression. Int J Parasitol 50:685–696. 
 197. Mu Y, McManus DP, Gordon CA, Cai P. 2021. Parasitic helminth-derivedmicroRNAs and extracellular vesicle cargos as biomarkers for helminthicinfections. Front Cell Infect Microbiol 11:708952. 
 198. Cai P, Gobert GN, You H, McManus DP. 2016. The Tao survivorship ofschistosomes: implications for schistosomiasis control. Int J Parasitol 46:453–463. 
 199. Pearson MS, Becker L, Driguez P, Young ND, Gaze S, Mendes T, Li XH,Doolan DL, Midzi N, Mduluza T, McManus DP, Wilson RA, Bethony JM,Nausch N, Mutapi F, Felgner PL, Loukas A. 2015. Of monkeys and men:immunomic profiling of sera from humans and non-human primates resistant toschistosomiasis reveals novel potential vaccine candidates.Front Immunol 6:213. 
 200. Mekonnen GG, Tedla BA, Pickering D, Becker L, Wang L, Zhan B, Bottazzi ME,Loukas A, Sotillo J, Pearson MS. 2020. Schistosoma haematobium extracellularvesicle proteins confer protection in a heterologous model of schistosomiasis.Vaccines (Basel) 8:416. 
 201. Buck JC, De Leo GA, Sokolow SH. 2020. Concomitant immunity andworm senescence may drive schistosomiasis epidemiological patterns:an eco-evolutionary perspective. Front Immunol 11:160. 
 202. Chulanetra M, Chaicumpa W. 2021. Revisiting the mechanisms ofimmune evasion employed by human parasites. Front Cell Infect Microbiol 11:702125. 
 203. McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou XN.2018. Schistosomiasis. Nat Rev Dis Primers 4:13. 
 204. Colley DG, Bustinduy AL, Secor WE, King CH. 2014. Human schistosomiasis.Lancet 383:2253–2264. 
 205. Bergquist R, Utzinger J, McManus DP. 2008. Trick or treat: the role of vaccines in integratedschistosomiasis control. PLoS Negl Trop Dis 2:e244.
 206. Knox DP. 2010. Parasite vaccines: recent progress in, and problems associated with their development.Open Infect Dis J 4:63–73. 
 207. Wait LF, Dobson AP, Graham AL. 2020. Do parasite infections interferewith immunisation? A review and meta-analysis. Vaccine 38:5582–5590.
 208. Farias LP, Vitoriano-Souza J, Cardozo LE, Gama LDR, Singh Y, MiyasatoPA, Almeida GT, Rodriguez D, Barbosa MMF, Fernandes RS, Barbosa TC,Neto A, Nakano E, Ho PL, Verjovski-Almeida S, Nakaya HI, Wilson RA,Leite LCC. 2021. Systems biology analysis of the radiation-attenuatedschistosome vaccine reveals a role for growth factors in protection andhemostasis inhibition in parasite survival. Front Immunol 12:624191.
 209. Smythies LE, Pemberton RM, Coulson PS, Mountford AP, Wilson RA.1992. T cell-derived cytokines associated with pulmonary immunemechanisms in mice vaccinated with irradiated cercariae of Schistosomamansoni. J Immunol 148:1512–1518.
 210. Hogg KG, Kumkate S, Mountford AP. 2003. IL-10 regulates early IL-12-mediated immune responses induced by the radiation-attenuated schistosomevaccine. Int Immunol 15:1451–1459. 
 211. McManus DP, Loukas A. 2008. Current status of vaccines for schistosomiasis.Clin Microbiol Rev 21:225–242. 
 212. Maizels RM, McSorley HJ. 2016. Regulation of the host immune systemby helminth parasites. J Allergy Clin Immunol 138:666–675.
 213. Taylor MD, LeGoff L, Harris A, Malone E, Allen JE, Maizels RM. 2005. Removal of regulatory Tcell activity reverses hyporesponsiveness andleads to filarial parasite clearance in vivo. J Immunol 174:4924–4933.
 214. Wilson MS, Cheever AW, White SD, Thompson RW, Wynn TA. 2011. IL-10blocks the development of resistance to re-infection with Schistosoma mansoni. PLoS Pathog 7:e1002171. 
 215. Allen JE, Maizels RM. 2011. Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11:375–388. 
 216. Liang F, Lindgren G, Lin A, Thompson EA, Ols S, Rohss J, John S, HassettK, Yuzhakov O, Bahl K, Brito LA, Salter H, Ciaramella G, Lore K. 2017. Efficient targeting and activation of antigen-presenting  cells in vivo aftermodified mRNA vaccine administration in rhesus macaques. Mol Ther 25:2635–2647. 
 217. Pugh J, Savulescu J, Brown RCH, Wilkinson D. 2022. The unnaturalistic fallacy: COVID-19 vaccine mandates should not discriminate against naturalimmunity. J Med Ethics 48:371-377. 
 218. Driciru E, Koopman JPR, Cose S, Siddiqui AA, Yazdanbakhsh M, ElliottAM, Roestenberg M. 2021. Immunological considerations for Schistosoma vaccine development: transitioning to endemic settings. FrontImmunol 12:635985. 
 219. Gordon CA, Krause L, McManus DP, Morrison M, Weerakoon KG, ConnorMC, Olveda RM, Ross AG, Gobert GN. 2020. Helminths, polyparasitism,and the gut microbiome in the Philippines. Int J Parasitol 50:217–225.
 220. Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. 2019. mRNA as a transformativetechnology for vaccine development to control infectious diseases. MolTher 27:757–772. 
 221. Liu J, Zhu C, Shi Y, Li H, Wang L, Qin S, Kang S, Huang Y, Jin Y, Lin J. 2012.Surveillance of Schistosoma japonicum infection in domestic ruminantsin the Dongting Lake region, Hunan province, China. PLoS One 7:e31876. 
 222. Gordon CA, Acosta LP, Gray DJ, Olveda RM, Jarilla B, Gobert GN, Ross AG,McManus DP. 2012. High prevalence of Schistosoma japonicum infectionin carabao from Samar Province, the Philippines: implications for transmission and control. PLoS Negl Trop Dis 6:e1778. 
 223. Da’dara AA, Li YS, Xiong T, Zhou J, Williams GM, McManus DP, Feng Z,Yu XL, Gray DJ, Harn DA. 2008. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine 26:3617–3625. 
 224. Williams GM, Sleigh AC, Li Y, Feng Z, Davis GM, Chen H, Ross AG, BergquistR, McManus DP. 2002. Mathematical modelling of schistosomiasis japonica:comparison of control strategies in the People’s Republic of China. ActaTrop 82:253–262. 
 225. Gray DJ, Li YS, Williams GM, Zhao ZY, Harn DA, Li SM, Ren MY, Feng Z,Guo FY, Guo JG, Zhou J, Dong YL, Li Y, Ross AG, McManus DP. 2014. Amulti-component integrated approach for the elimination of schistosomiasis in the People’s Republic of China: design and baseline results of a
 4-year cluster-randomised intervention trial. Int J Parasitol 44:659–668.
 226. You H, Gobert GN, Duke MG, Zhang W, Li Y, Jones MK, McManus DP.2012. The insulin receptor is a transmission blocking veterinary vaccinetarget for zoonotic Schistosoma japonicum. Int J Parasitol 42:801–807.
 227. McManus DP. 2005. Prospects for development of a transmission blocking vaccine againstSchistosoma japonicum. Parasite Immunol 27:297–308. 
 228. Da’Dara AA, Li C, Yu X, Zheng M, Zhou J, Shollenberger LM, Li YS, HarnDA. 2019. Prime-boost vaccine regimen for SjTPI and SjC23 schistosomevaccines, increases efficacy in water buffalo in a field trial in China. FrontImmunol 10:284. 
 229. Nixon SA, Welz C, Woods DJ, Costa-Junior L, Zamanian M, Martin RJ.2020. Where are all the anthelmintics? Challenges and opportunities onthe path to new anthelmintics. Int J Parasitol Drugs Drug Resist 14:8–16.
 230. Lebens M, Sun JB, Czerkinsky C, Holmgren J. 2004. Current status andfuture prospects for a vaccine against schistosomiasis. Expert Rev Vaccines 3:315–328. 
 231. Wilson RA, Li XH, Castro-Borges W. 2016. Do schistosome vaccine trialsin mice have an intrinsic flaw that generates spurious protection data?Parasit Vectors 9:89. 
 232. Abdul-Ghani RA, Hassan AA. 2010. Murine schistosomiasis as a modelfor human schistosomiasis mansoni: similarities and discrepancies. Parasitol Res 107:1–8. 
 233. Vaumourin E, Vourc’h G, Gasqui P, Vayssier-Taussat M. 2015. The importance of multiparasitism: examining the consequences of co-infectionsfor human and animal health. Parasit Vectors 8:545. 
 234. Devi KR, Lee LJ, Yan LT, Syafinaz AN, Rosnah I, Chin VK. 2021. Occupationalexposure and challenges in tackling M. bovis at human-animal interface: anarrative review. Int Arch Occup Environ Health 94:1147–1171. 
 235. Elias D, Akuffo H, Thors C, Pawlowski A, Britton S. 2005. Low dose chronicSchistosoma mansoni infection increases susceptibility to Mycobacteriumbovis BCG infection in mice. Clin Exp Immunol 139:398–404. 
 236. Beechler BR, Boersma KS, Buss PE, Coon CAC, Gorsich EE, Henrichs BS,Siepielski AM, Spaan JM, Spaan RS, Ezenwa VO, Jolles AE. 2019. Bovinetuberculosis disturbs parasite functional trait composition in Africanbuffalo. Proc Natl Acad Sci U S A 116:14645–14650. 
 237. Weatherhead JE, Gazzinelli-Guimaraes P, Knight JM, Fujiwara R, HotezPJ, Bottazzi ME, Corry DB. 2020. Host immunity and inflammation to pulmonary helminth infections. Front Immunol 11:594520.
 238. Siddiqui AA, Siddiqui SZ. 2017. Sm-p80-based schistosomiasis vaccine:preparation for human clinical trials. Trends Parasitol 33:194–201.
 239. Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, Huber C,Tureci O, Sahin U. 2008. Increased antigen presentation efficiency bycoupling antigens to MHC class I trafficking signals. J Immunol 180:309-318
 240. De Beuckelaer A, Grooten J, De Koker S. 2017. Type I interferons modulate CD8(1) T cell immunity to mRNA vaccines. Trends Mol Med 23:216-226. 
 241. Pardi N, Parkhouse K, Kirkpatrick E, McMahon M, Zost SJ, Mui BL, Barbosa CJ, Madden TD, Hope MJ, Krammer F, Hensley SE,Weissman D. 2018. Nucleoside-modified mRNA immunization elicitsinfluenza virus hemagglutinin stalk-specific antibodies. Nat Commun 9:3361. 
 242. https://doi.org/10.1038/s41467-018-05482-0.
 243. https://www.cdc.gov/globalhealth/newsroom/topics/ntds/index.html
 244. https://www.gatesfoundation.org/our-work/global-health/neglected-tropical-diseases
 245. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/
 246. https://www.gavi.org/changecold-storage-conditions-could-make-pfizer-covid-19-vaccine-more-widely
 247. https://www.gavi.org/vaccineswork/change-cold-storage-conditions-could-make-pfizer-covid-19-vaccine-more-widely
 TS. Nguyễn Thị Liên Hạnh & TS.BS. Huỳnh Hồng Quang
 Viện Sốt rét-KST-CT Quy Nhơn