Home TRANG CHỦ Thứ 2, ngày 22/07/2024
    Hỏi đáp   Diễn đàn   Sơ đồ site     Liên hệ     English
IMPE-QN
Web Sites & Commerce Giới thiệu
Web Sites & Commerce Tin tức - Sự kiện
Web Sites & Commerce Hoạt động hợp tác
Web Sites & Commerce Hoạt động đào tạo
Finance & Retail Chuyên đề
Dịch tễ học
Côn trùng học
Nghiên cứu lâm sàng & điều trị
Ký sinh trùng sốt rét
Ký sinh trùng
Sinh học phân tử
Sán lá gan
Sốt xuất huyết
Bệnh do véc tơ truyền
Vi khuẩn & Vi rút
Sán
Giun
Nấm-Đơn bào
Web Sites & Commerce Tư vấn sức khỏe
Web Sites & Commerce Tạp chí-Ấn phẩm
Web Sites & Commerce Thư viện điện tử
Web Sites & Commerce Hoạt động Đảng & Đoàn thể
Web Sites & Commerce Bạn trẻ
Web Sites & Commerce Văn bản pháp quy
Số liệu thống kê
Web Sites & Commerce An toàn thực phẩm & hóa chất
Web Sites & Commerce Thầy thuốc và Danh nhân
Web Sites & Commerce Ngành Y-Vinh dự và trách nhiệm
Web Sites & Commerce Trung tâm dịch vụ
Web Sites & Commerce Thông báo-Công khai
Web Sites & Commerce Góc thư giản

Tìm kiếm

Đăng nhập
Tên truy cập
Mật khẩu

WEBLINKS
Website liên kết khác
 
 
Số lượt truy cập:
5 3 1 5 6 9 6 5
Số người đang truy cập
5 6
 Chuyên đề Ký sinh trùng
Entamoeba histolytica: Tác nhân ký sinh trùng gây tử vong đứng thứ 2 trên thế giới? (Phần 5-Hết)

Tiếp theo Phần 4


Cơ chế bảo vệ của người ở biểu mô và đáp ứng miễn dịch bẩm sinh qua trung gian tế bào chống lại E. histolytica

Peptide kháng khuẩntheo sau bởicác phản ứng miễn dịch bẩm sinh qua trung gian tế bào tương ứng với cấp độ thứ hai củacơ chế phòng thủ đường ruộtchống lại sự xâm nhập của E. histolytica; chúng bao gồm defensin, protein REG (regenerating islet-derived proteins) và alarmin. Defensin là các peptide nhỏ tích hợp vào màng tế bào và tạo thành lỗ nhỏ để tiêu diệt vi sinh vật xâm nhập. E. histolytica kích thích các tế bào giống ruột tiết ra defensin α và β, khi được tinh lọc có thể tiêu diệt thể hoạt động trong ống nghiệm, nhưng đồng thời, các gen mã hóa defensin β lại bị giảm điều hòa trong mô hình nhiễmamípgiàn scaffold 3D và trong mô ghép dị chủng (xenograft) ở người, có thể là một cơ chế phòng thủ amíp cần được nghiên cứu thêm. Peptide kháng khuẩn REG1A (chống chết tế bào theo chương trình) và mRNA của REG1B tăng lên trong quá trình nhiễm amíp cấp tính ở người và REG4 (chống viêm) được tiết ra bởi các tế bào trong mô hình giàn scaffoldruột 3D.

Alarmin là các phân tử nội sinh được giải phóng để báo hiệu căng thẳng hoặc tổn thương tế bào hoặc mô. Protein 1 có độ linh động cao (HMGB1) - một protein liên kết DNA nhân có mặt ở khắp mọi nơi là một alarmin kích hoạt hệ miễn dịch bẩm sinh, được giải phóng bởi các tế bào hoại tử hoặc được tiết ra bởi đại thực bào, tế bào tiêu diệt tự nhiên và tế bào tua gai (dendritic cells). HMGB1 được kích hoạt và giải phóng từ đại thực bào để đáp ứng với sự xâm nhập của E. histolytica. Sự tiết HMGB1 phụ thuộc vào hệ vi sinh vật và phân tử này định hình mức độ của phản ứng tiền viêm trong bệnh lỵamíp.

Khi xem xét hoạt động hệ vi sinh vật (như sản xuất chất chuyển hóa) và sự đa dạng của phản ứng hệ miễn dịch do hiện diện của mầm bệnh đường ruột, chúng ta có được cái nhìn tổng thể về phản ứng miễn dịch đường ruột. Tóm tắt ngắn gọn về những phản ứng này nhấn mạnh đến một số yếu tố và các thụ thể Toll-like (TLR) trên bề mặt tế bào ruột, nhận biết các hợp chất có nguồn gốc từ vi sinh vật và kích hoạt các chuỗi truyền tín hiệu kết thúc bằng sự chuyển vị nhân của yếu tố phiên mã NF-κB và tiết ra các cytokine và chemokine (TNF, IL-6, IL-8, IL-18 và CCL20). Các phân tử này kích hoạt tế bào miễn dịch nằm bên dưới lớp tế bào ruột, di chuyển đến vị trí nhiễm trùng (tế bào tua,bạch cầu đơn nhân, bạch cầu trung tính, tế bào lympho T). Các yếu tố kháng khuẩn, gồm β-defensin và nitric oxide synthase có thể sản sinh ra nitric oxide, cũng được kích hoạt sau khi kích hoạt TLR.


Bệnh lý do amip Entamoeba histolytica xâm lấn nhiều mô và cơ quan ở người

Mầm bệnh và tình trạng viêm làm tổn thương tế bào ruột, chúng có thể tự đào thải ra khỏi biểu mô đường ruột bằng một cơ chế liên quan đến việc kích hoạt các caspase viêm (caspase-1, -4 và -11) cùng với caspase-8. Caspase được kích hoạt gây ra phức hợp tín hiệu đại phân tử được gọi là "inflammasome", kích hoạt quá trình xử lý và tiết ra cytokine tiền viêm IL-18, cũng như một dạng chết tế bào viêm đặc biệt được gọi là pyroptosis. Bước cuối cùng của pyroptosis đòi hỏi sự chia tách protein tạo lỗ gasdermin D bởi caspase-1; đầu N của gasdermin D tạo thành lỗ xuyên màng gây rối loạn điều hòa ion và nước, và các tế bào chết giải phóng các cytokine như IL-1β, IL-18 và prostaglandin PGE2, dẫn đến sản sinh interferon-γ (IFN-γ) và tuyển chọn bạch cầu trung tính.

Nhiều thành phần đánh dấu phản ứng miễn dịch này được kích hoạt trong quá trình xâm nhập niêm mạc đại tràng củaE. histolytica, gây ra quá trình viêm phức tạp với sản xuất các interleukin (IL-1β, IL-6, IL-8), IFN-γ và yếu tố hoại tử khối u (TNF). Yếu tố này kích hoạt tế bào miễn dịch, gồm bạch cầu trung tính, lympho bào, đại thực bào dự kiến sẽ tiêu diệt thể hoạt động thông qua hoạt động của ROS và NO.Đối với đại thực bào, LPPG của E. histolytica được nhận biết bởi TLR 2 và TLR4, với sự kích hoạt của NF-kB và giải phóng IL-8, IL-10, IL-12p40 và TNF. Caspase-1 (được xử lý bởi CP-A5) kích hoạt inflammasome NLRP3-like và cắt pro-IL-1β thành dạng hoạt động IL-1β, quá trình tiết IL-1β này cũng phụ thuộc vào hoạt động của caspase-4 và gasdermin D.

Sự thâm nhiễm bạch cầu trung tính xảy ra rất mạnh ở đại tràng người do mật độ của E. histolytica và chúng tiêu diệt E. histolytica với sự có mặt của TNF và IFN-γ chủ yếu thông qua ROS. Sự suy giảm đa dạng hệ vi sinh vật ở người hoặc ở mô hình chuột làm tăng mức độ nghiêm trọng của nhiễm E. histolytica, có thể do giảm sự huy động bạch cầu trung tính đến vị trí nhiễm trùng. Tuy nhiên, cơ chế tương tác amíp-bạch cầu trung tính và kéo theo đó là cái chết ký sinh trùng và tế bào vẫn chưa được xác định rõ. Tiếp xúc của bạch cầu trung tính người với E. histolytica hoặc LPPG tinh khiết gây ra giải phóng các bẫy ngoại bào của bạch cầu trung tính (Neutrophil Extracellular Traps-NET) theo thời gian và liều lượng, nhưng không rõ liệu các NET này có khả năng tiêu diệt E. histolytica hay không. Cơ chế của NETosis liên quan đến sự chuyển vị elastase vào nhân tế bào do sự tạo ra ROS bởi NADPH oxidase (NOX2) hoặc do hoạt hóa peptidyl arginine deiminase 4 (PAD4); cả hai cơ chế đều dẫn đến sự phân rã DNA. NETosis do amíp gây ra không phụ thuộc vào hoạt động của ROS và PAD4. Tuy nhiên, nó phụ thuộc vào sự hiện diện của canxi ngoại bào và hoạt động protease serine, con đường tín hiệu dẫn đến NETosis liên quan đến sự kích hoạt Raf/MEK/ERK và NF-κB.

Bên cạnh stress oxy hóa và nitrosative, một số cytokine (ví dụ như TNF) có thể hoạt động như chất hoá hướng động (chemoattractant) cho E. histolytica bằng cách tăng cường khả năng di chuyển và định hướng của thể hoạt động, protein bề mặt amíp CSP có nhiều sự tương đồng với thụ thể TNF của người, thậm chí việc chặn CSP hủy bỏ hóa hướng động hướng đến TNF và ngăn chặn sự xâm nhập ký sinh trùng vào các mô cấy ghép của đại tràng người.

Các tế bào biểu mô ruột non thường sản xuất interleukin-25 (IL-25), nhưng điều này lại giảm ở người mắc viêm đại tràng do amíp; cytokine này đóng vai trò trong việc duy trì chức năng hàng rào ruột và ức chế sản xuất TNF. Sự bảo vệ qua trung gian IL-25 đi kèm với việc giảm mức TNF trong các mô hình thử nghiệm của bệnh lỵamíp. IL-33 (nuclear alarmin) kích hoạt các tế bào lympho bào bẩm sinh gây ra phản ứng miễn dịch type 2; gen mã hóa IL-33 được điều hòa tăng lên ở người mắc lỵ amíp đại tràng cho thấy IL-33 tham gia vào việc kích hoạt các cơ chế sửa chữa hàng rào để bảo vệ mô ruột khỏi E. histolytica. Nhìn chung, xem xét nhanh về dữ liệu này xác nhận tính phức tạp của phản ứng miễn dịch bẩm sinh chống lại E. histolytica khi xem xét sự đa dạng các tế bào được kích hoạt, các sản phẩm tiết ra và hậu quả lên tính toàn vẹn của mô.


Hình 3. Hệ vi sinh có vai trò trong chu kỳ sinh học
E. histolytica và phản ứng mô.

Sự cân bằng giữa thể hoạt động và bào nang bị ảnh hưởng mạnh bởi hệ vi sinh.Thứ nhất,amíp ăn thực bào vi khuẩn và các chất dinh dưỡng từ quá trình này thúc đẩy sự phát triển của thể hoạt động. Các sản phẩm do vi khuẩn tiết ra như axit béo chuỗi ngắn (SCFAs) được dự đoán sẽ cung cấp năng lượng cho sự phát triển ký sinh trùng. Trong quá trình thiếu nguồn carbon, SCFAs kích thích sản xuất mucin, chất này có thể được sử dụng làm nguồn carbon. Acetate là một SCFA gây ra quá trình tạo nang trong ống nghiệm ở E. histolytica. Thứ hai, một hoạt động quan trọng vi khuẩn là hoạt động như một nguồn hỗ trợ ký sinh trùng sống sót trong tình huống stress oxy hóa (OS); nó điều hoà biểu hiện gen amíp, các chất chuyển hóa như oxalacetic và queuine, có nguồn gốc từ Enterobacteriaceae, bảo vệ E. histolytica khỏi OS. Phản ứng này không phổ biến vì Lactobacillus acidophilus (một lợi khuẩn) sửa đổi hệ phiên mã amíp khác nhau và gây ra quá trình oxy hóa các protein quan trọng của E. histolytica dẫn đến chết thể hoạt động.

Các tổn thương lớn xảy ra ở giai đoạn đầu tiếp xúc giữa E. histolytica và biểu mô ruột dẫn đến phá vỡ các mối nối chặt chẽ kết hợp với sự phá vỡ các kênh ion, cấu trúc mô bị phá vỡ. Các tế bào động vật có vú chết do“nhấm nháp” tế bào, quá trình chết theo chương trình và thực bào. Phản ứng viêm xảy ra dẫn đến chết tế bào, hệ vi sinh vật ảnh hưởng đến hoạt động của alarmin.

Nhiều yếu tố quan tâm khác liên quan đến sự phòng thủ đường ruột chống lại E. histolytica, hoặc có tác động đến sự phát triển của bệnh lỵamíp, gồm các khía cạnh di truyền, xã hội và dinh dưỡng. Đối với các tác động của các yếu tố liên quan đến độc lực như là các mục tiêu tiềm năng cho các liệu pháp điều trị amíp mới. Việc phòng bệnh, làm thế nào để phòng chống, có lẽ chỉ thông qua kiểm soát bệnh: (i) Tránh ô nhiễm phân trong môi trường thông qua xây dựng hệ thống hố xí khép kín; (ii) Tránh ô nhiễm vào nguồn nước bởi chất phân; (iii) Luôn luôn rửa sạch tay bằng xà phòng ít nhất 3 lầ sau khi đi đại tiện; (iv) Rửa sạch tay trước khi bắt đầu ăn; (vi) Kiểm soát sự lan rộng của bệnh qua con đường ruồi nhặng vì ở đó chúng mang bao nang; (vii) Bảo vệ thực phẩm tránh các con gián đậu đi vào; (viii) Đun sôi nước ở 55°C, E. histolytica dạng bào nang có thể bị giết chết; (ix) Tránh không nấu và salad xanh vì chúng có thể chứa bào nang; (x) Rửa sạch trái cây và rau quả; (xi) Giáo dục sức khỏe, đặc biệt các cán bộ nhà trường, chuyên giữ và vận chuyển thức ăn, trung tâm y tế cộng đồng; (xii) Tránh dùng phân tươi để bón rau; (xiii) Vệ sinh sạch sẽ các thùng rác; (xiv) Sàng lọc xét nghiệm người mang mầm bệnh ở các khu công nghiệp chế biến thức ăn.

KẾT LUẬN

Nghiên cứu về các đường dẫn đến bệnh lỵ amíp đường ruột và phòng ngừa nó vẫn là một thách thức thực sự do mối quan hệ phức tạp và nhiều mặt giữa E. histolyticagây hại và vật chủ trong các giai đoạn khác nhau của bệnh lỵamíp. Sự đối đầu của thể hoạt động với hệ vi sinh, hệ miễn dịch của người và sản phẩm gây stress của chúng, kích hoạt các đường dẫn điều hòa cần thiết cho các hiện tượng di truyền, phiên mã và biểu sinh di truyền duy trì sự phát triển ổn định của E. histolytica và đảm bảo sự tồn tại của nó trong cơ thể người. Mặc dù, không được quan tâm đầy đủ, hệ vi sinh đóng một vai trò quan trọng trong mối quan hệ của E. histolytica với đường ruột. Đáng chú ý, nó có thể ảnh hưởng đến chu kỳ sinh học, phản ứng stress và khả năng gây bệnh. Sự đơn giản của chu kỳ sinh họcamíp đảm bảo sự lây lan của ký sinh trùng giữa người với người và do đó sự tồn tại loài Entamoebaspp. như các vi khuẩn hội sinh (hoặc cộng sinh). Ngay cả trong tương lai, khi độc lực và khả năng gây bệnh được kiểm soát bằng các phương pháp điều trị dược lý hoặc tiêm chủng mới, E. histolytica, với tư cách là một ký sinh trùng, có thể sẽ tiếp tục tiến hóa cùng với con người giống như các loài Entamoeba spp. khác.

(Hết)


TÀI LIỆU THAM KHẢO

1.Di Cristanziano V, Farowski F, Berrilli F, et al. Analysis of human gut microbiota composition associated to the presence of commensal and pathogen microorganisms in Côte d’Ivoire. Microorganisms. 2021 Aug 18;9(8):1763.

2.Even G, Lokmer A, Rodrigues J, et al. Changes in the human gut microbiota associated with colonization by Blastocystis sp. and Entamoeba spp. in non-industrialized populations. Front Cell Infect Microbiol. 2021;11:533528.

3.Lukes J, Stensvold CR, Jirku-Pomajbikova K, et al. Are human intestinal eukaryotes beneficial or commensals? PLOS Pathogens. 2015 Aug;11(8):e1005039.

4.Chiaranunt P, Burrows K, Ngai L, et al. NLRP1B and NLRP3 Control the Host Response following Colonization with the Commensal Protist Tritrichomonas musculis. J Immunol. 2022 Apr 1;208(7):1782–22.

5.Le Bailly M, Maicher C, Dufour B. Archaeological occurrences and historical review of the human amoeba, Entamoeba histolytica, over the past 6000years. Infect Genet Evol. 2016 Aug;42:34–40.

6.Wilson IW, Weedall GD, Lorenzi H, et al. Genetic diversity and gene family expansions in members of the genus Entamoeba. Genome Biol Evol. 2019 Jan 21;11(3):688-705.

7.Marie C, Petri WA Jr. Regulation of virulence of Entamoeba histolytica. Annu Rev Microbiol. 2014;68:493–520.

8.Haque R, Duggal P, Ali IM, et al. Innate and acquired resistance to amebiasis in bangladeshi children. J Infect Dis. 2002 Aug 15;186(4):547–552.

9.Shirley DT, Farr L, Watanabe K, et al. A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infect Dis. 2018 Jul;5(7):ofy161.

10.Alvarado-Esquivel C, Hernandez-Tinoco J, Francisco Sanchez-Anguiano L, et al. Serosurvey of Entamoeba histolytica exposure among Tepehuanos population in Durango, Mexico. Int J Biomed Sci. 2015 Jun;11(2):61–66.

11.Zhou F, Li M, Li X, et al. Seroprevalence of Entamoeba histolytica infection among Chinese men who have sex with men. PLoS negl trop dis. 2013;7(5):e2232.

12.Nath J, Ghosh SK, Singha B, et al. Molecular epidemiology of amoebiasis: a cross-sectional study among North East Indian population. PLoS negl trop dis. 2015 Dec;9(12):e0004225.

13.Ozin Y, Kilic MZ, Nadir I, et al. Presence and diagnosis of amebic infestation in Turkish patients with active ulcerative colitis. Eur J Intern Med. 2009 Sep;20(5):545–547.

14.Shirley DT, Watanabe K, Moonah S. Significance of amebiasis: 10 reasons why neglecting amebiasis might come back to bite us in the gut. PLoS negl trop dis. 2019 Nov;13(11):e0007744.

15.Weir CB, Le JK. Metronidazole. Treasure Island (FL): StatPearls; 2022.

16.Marie C, Petri WA Jr. Amoebic dysentery. BMJ Clin Evid. 2013 Aug 30;2013;1:16.

17.Nakada-Tsukui K, Nozaki T. Immune response of amebiasis and immune evasion by Entamoeba histolytica. Front Immunol. 2016;7:175.

18.Guillen N. Signals and signal transduction pathways in Entamoeba histolytica during the life cycle and when interacting with bacteria or human cells. Mol Microbiol. 2021 May;115(5):901–915.

19.Seid M, Yohanes T, Goshu Y, et al. The effect of compliance to Hand hygiene during COVID-19 o­n intestinal parasitic infection and intensity of soil transmitted helminthes, among patients attending general hospital, southern Ethiopia: observational study. PloS o­ne. 2022;17(6):e0270378.

20.Krishnan D, Ghosh SK. Morphological and motility features of the stable bleb-driven monopodial form of entamoeba and its importance in encystation. Infect Immun. 2020 Jul 21;88(8).

21.Mi-Ichi F, Tsugawa H, Arita M, et al. Pleiotropic roles of cholesteryl sulfate during Entamoeba Encystation: involvement in cell rounding and development of membrane impermeability. mSphere. 2022 Aug 31;7(4):e0029922.

22.Mousa EAA, Sakaguchi M, Nakamura R, et al. The dynamics of ultrastructural changes during Entamoeba invadens encystation. Parasitology. 2020 Oct;147(12):1305–1312.

23.Singh N, Naiyer S, Bhattacharya S. Ultra-structural analysis and morphological changes during the differentiation of trophozoite to cyst in Entamoeba invadens. Mol Biochem Parasitol. 2021 Mar;242:111363.

24.Manna D, Ehrenkaufer GM, Lozano-Amado D, et al. Entamoeba stage conversion: progress and new insights. Curr Opin Microbiol. 2020 Dec;58:62–68.

25.Coppi A, Merali S, Eichinger D. The enteric parasite Entamoeba uses an autocrine catecholamine system during differentiation into the infectious cyst stage. J Biol Chem. 2002 Mar 8;277(10):8083–8090.

26.Eichinger D. A role for a galactose lectin and its ligands during encystment of Entamoeba. J Eukaryot Microbiol. 2001 Jan-Feb;48(1):17–21.

27.Ehrenkaufer GM, Hackney JA, Singh U. A developmentally regulated Myb domain protein regulates expression of a subset of stage-specific genes in Entamoeba histolytica. Cell Microbiol. 2009 Jun;11(6):898–910.

28.Manna D, Lentz CS, Ehrenkaufer GM, et al. An NAD(+)-dependent novel transcription factor controls stage conversion in Entamoeba. Elife. 2018 Oct 30;7.

29.Manna D, Lozano-Amado D, Ehrenkaufer G, et al. The NAD(+) responsive transcription factor ERM-BP functions downstream of cellular aggregation and is an early regulator of development and heat shock response in Entamoeba. Front Cell Infect Microbiol. 2020;10:363.

30.Manna D, Singh U. Nuclear Factor Y (NF-Y) modulates Encystation in Entamoeba via stage-specific expression of the NF-YB and NF-YC Subunits. MBio. 2019 Jun 18;10(3). 00737-19.

31.Lozano-Amado D, Avila-Lopez PA, Hernandez-Montes G, et al. A class I histone deacetylase is implicated in the encystation of Entamoeba invadens. Int J Parasitol. 2020 Oct;50(12):1011–1022.

32.Kawano-Sugaya T, Izumiyama S, Yanagawa Y, et al. Near-chromosome level genome assembly reveals ploidy diversity and plasticity in the intestinal protozoan parasite Entamoeba histolytica. BMC Genomics. 2020 Nov 23;21(1):813.

33.Mukherjee C, Majumder S, Lohia A. Inter-cellular variation in DNA content of Entamoeba histolytica originates from temporal and spatial uncoupling of cytokinesis from the nuclear cycle. PLoS negl trop dis. 2009;3(4):e409.

34.Das S, Lohia A. Delinking of S phase and cytokinesis in the protozoan parasite Entamoeba histolytica. Cell Microbiol. 2002 Jan;4(1):55–60.

35.Clark CG, Alsmark UC, Tazreiter M, et al. Structure and content of the Entamoeba histolytica genome. Adv Parasitol. 2007;65:51–190.

36.Lohia A. The cell cycle of Entamoeba histolytica. Mol Cell Biochem. 2003 Nov;253(1–2):217–222.

37.Clark CG, Roger AJ. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA. 1995 Jul 3;92(14):6518–6521.

38.Ali V, Nozaki T. Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by “amitochondriate” protozoan parasites. Clinical Microbiology Reviews. 2007 Jan;20(1):164–187.

39.Saavedra E, Encalada R, Vazquez C, et al. Control and regulation of the pyrophosphate-dependent glucose metabolism in Entamoeba histolytica. Mol Biochem Parasitol. 2019 Apr;229:75–87.

40.Tovar J, Fischer A, Clark CG. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol. 1999 Jun;32(5):1013–1021.

41.Santos HJ, Nozaki T. The mitosome of the anaerobic parasitic protist Entamoeba histolytica: a peculiar and minimalist mitochondrion-related organelle. J Eukaryot Microbiol. 2022 May 19;69:e12923.

42.Mi-Ichi F, Miyamoto T, Takao S, et al. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Proc Natl Acad Sci USA. 2015 Jun 2;112(22):E2884–90.

43.Alsmark UC, Sicheritz-Ponten T, Foster PG, et al. Horizontal gene transfer in eukaryotic parasites: a case study of Entamoeba histolytica and Trichomonas vaginalis. Methods Mol Biol. 2009;532:489–500.

44.Grant JR, Katz LA. Phylogenomic study indicates widespread lateral gene transfer in Entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol Evol. 2014 Sep;6(9):2350–2360.

45.Verner Z, Zarsky V, Le T, et al. Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol. PLOS Pathogens. 2021 Nov;17(11):e1010041.

46.Santos HJ, Hanadate Y, Imai K, et al. Entamoeba histolytica EHD1 is involved in mitosome-endosome contact. MBio. 2022 Apr 26;13(2):e0384921.

47.Davis PH, Zhang Z, Chen M, et al. Identification of a family of BspA like surface proteins of Entamoeba histolytica with novel leucine rich repeats. Mol Biochem Parasitol. 2006 Jan;145(1):111–116.

48.Vayssie L, Vargas M, Weber C, et al. Double-stranded RNA mediates homology-dependent gene silencing of gamma-tubulin in the human parasite Entamoeba histolytica. Mol Biochem Parasitol. 2004 Nov;138(1):21–28.

49.Perdomo D, Ait-Ammar N, Syan S, et al. Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica. J Proteomics. 2015 Jan 1;112:125–140.

50.Vaithilingam A, Teixeira JE, Huston CD. Endoplasmic reticulum continuity in the protozoan parasite Entamoeba histolytica: evolutionary implications and a cautionary note. Commun Integr Biol. 2008;1(2):172–174.

51.Manich M, Hernandez-Cuevas N, Ospina-Villa JD, et al. Morphodynamics of the actin-rich cytoskeleton in Entamoeba histolytica. Front Cell Infect Microbiol. 2018;8:179.

52.Hernandez-Cuevas NA, Jhingan GD, Petropolis D, et al. Acetylation is the most abundant actin modification in Entamoeba histolytica and modifications of actin’s amino-terminal domain change cytoskeleton activities. Cell Microbiol. 2019 Apr;21(4):e12983.

53.Rath PP, Gourinath S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins. 2020 Oct;88(10):1361–1375.

54.Mornico D, Hon CC, Koutero M, et al. RNA Sequencing reveals widespread transcription of natural antisense RNAs in Entamoeba species. Microorganisms. 2022 Feb 8;10(2):396.

55.Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707):20150504.

56.Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 2020 Apr 26;38:23–48.

57.Magnusdottir S, Ravcheev D, de Crecy-Lagard V, et al. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.

58.Burgess SL, Oka A, Liu B, et al. Intestinal parasitic infection alters bone marrow derived dendritic cell inflammatory cytokine production in response to bacterial endotoxin in a diet-dependent manner. PLoS negl trop dis. 2019 Jul;13(7):e0007515.

59.Byers J, Faigle W, Eichinger D. Colonic short-chain fatty acids inhibit encystation of Entamoeba invadens. Cell Microbiol. 2005 Feb;7(2):269–279.

60.Burger-van Paassen N, Vincent A, Puiman PJ, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J. 2009 May 13;420(2):211–219.

61.Lokmer A, Cian A, Froment A, et al. Use of shotgun metagenomics for the identification of protozoa in the gut microbiota of healthy individuals from worldwide populations with various industrialization levels. PLoS o­nE. 2019;14(2):e0211139.

62.Iebba V, Santangelo F, Totino V, et al. Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Cote d’Ivoire. J Infect Dev Ctries. 2016 Sep 30;10(9):1035–1041.

63.Verma AK, Verma R, Ahuja V, et al. Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiol. 2012 Aug 22;12:183.

64.Ankri S. Entamoeba histolyticagut microbiota interaction: more than meets the eye. Microorganisms. 2021 Mar 12;9(3):581.

65.Zarate S, Taboada B, Yocupicio-Monroy M, et al. Human Virome. Arch Med Res. 2017 Nov;48(8):701–716.

66.Aguilar-Rojas A, Olivo-Marin JC, Guillen N. Human intestinal models to study interactions between intestine and microbes. Open Biol. 2020 Oct;10(10):200199.

67.Aguilar-Rojas A, Castellanos-Castro S, Matondo M, et al. Insights into amebiasis using a human 3D-intestinal model. Cell Microbiol. 2020 Aug;22(8):e13203.

68.Aguilar-Diaz H, Diaz-Gallardo M, Laclette JP, et al. In vitro induction of Entamoeba histolytica cyst-like structures from trophozoites. PLoS negl trop dis. 2010 Feb 16;4(2):e607.

69.Luna-Nacar M, Navarrete-Perea J, Moguel B, et al. Proteomic study of Entamoeba histolytica trophozoites, cysts, and cyst-like structures. PLoS o­nE. 2016;11(5):e0156018.

70.Barron-Gonzalez MP, Villarreal-Trevino L, Resendez-Perez D, et al. Entamoeba histolytica: cyst-like structures in vitro induction. Exp Parasitol. 2008 Apr;118(4):600–603.

71.Wesel J, Shuman J, Bastuzel I, et al. Encystation of Entamoeba histolytica in axenic culture. Microorganisms. 2021 Apr 18;9(4).

72.Ehrenkaufer GM, Eichinger DJ, Singh U. Trichostatin a effects o­n gene expression in the protozoan parasite Entamoeba histolytica. BMC Genomics. 2007 Jul 5;8:216.

73.Sarid L, Ankri S. Are metabolites from the gut microbiota capable of regulating epigenetic mechanisms in the human parasite Entamoeba histolytica? Front Cell Dev Biol. 2022;10:841586.

74.Krishnan D, Ghosh SK. Cellular events of multinucleated giant cells formation during the Encystation of Entamoeba invadens. Front Cell Infect Microbiol. 2018;8:262.

75.Turner NA, Eichinger D. Entamoeba invadens: the requirement for galactose ligands during encystment. Exp Parasitol. 2007 Aug;116(4):467–474.

76.Mi-Ichi F, Yoshida H, Hamano S. Entamoeba Encystation: new targets to prevent the transmission of Amebiasis. PLOS Pathogens. 2016 Oct;12(10):e1005845.

77.Heron BT, Sateriale A, Teixeira JE, et al. Evidence for a novel Entamoeba histolytica lectin activity that recognises carbohydrates present o­n ovalbumin. Int J Parasitol. 2011 Feb;41(2):137–144.

78.Khan F, Kurre D, Suguna K. Crystal structures of a beta-trefoil lectin from Entamoeba histolytica in monomeric and a novel disulfide bond-mediated dimeric forms. Glycobiology. 2020 Jul 20;30(7):474–488.

79.Petri WA Jr., Smith RD, Schlesinger PH, et al. Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica. J Clin Invest. 1987 Nov;80(5):1238–1244.

80.Petri WA Jr., Haque R, Mann BJ. The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annu Rev Microbiol. 2002;56:39–64.

81.Manning-Cela R, Meraz MA, Hernandez JM, et al. Actin mRNA levels and actin synthesis during the encystation of Entamoeba invadens. J Eukaryot Microbiol. 1994 Jul-Aug;41(4):360–365.

82.Makioka A, Kumagai M, Ohtomo H, et al. Entamoeba invadens: enhancement of excystation and metacystic development by cytochalasin D. Exp Parasitol. 2001 Jul;98(3):145–151.

83.Field J, Van Dellen K, Ghosh SK, et al. Responses of Entamoeba invadens to heat shock and encystation are related. J Eukaryot Microbiol. 2000 Sep-Oct;47(5):511–514.

84.Varet H, Shaulov Y, Sismeiro O, et al. Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica. Sci Rep. 2018 Jun 13;8(1):9042.

85.Mornico D, Hon CC, Koutero M, et al. Genomic determinants for initiation and length of natural antisense transcripts in Entamoeba histolytica. Sci Rep. 2020 Nov 19;10(1):20190.

86.Lambeth JD, Neish AS. Nox enzymes and new thinking o­n reactive oxygen: a double-edged sword revisited. Annu Rev Pathol. 2014;9:119-145.

87.Singh V, Ahlawat S, Mohan H, et al. Balancing reactive oxygen species generation by rebooting gut microbiota. J Appl Microbiol. 2022 Jun;132(6):4112–4129.

88.Shahi P, Trebicz-Geffen M, Nagaraja S, et al. Proteomic identification of oxidized proteins in Entamoeba histolytica by resin-assisted capture: insights into the role of arginase in resistance to oxidative stress. PLoS negl trop dis. 2016 Jan;10(1):e0004340.

89.Vicente JB, Ehrenkaufer GM, Saraiva LM, et al. Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol. 2009 Jan;11(1):51-69.

90.Rastew E, Vicente JB, Singh U. Oxidative stress resistance genes contribute to the pathogenic potential of the anaerobic protozoan parasite, Entamoeba histolytica. Int J Parasitol. 2012 Oct;42(11):1007–1015.

91.Pearson RJ, Morf L, Singh U. Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem. 2013 Feb 8;288(6):4462–4474.

92.Shaulov Y, Shimokawa C, Trebicz-Geffen M, et al. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLOS Pathogens. 2018 Oct;14(10):e1007295.

93.Nagaraja S, Cai MW, Sun J, et al. Queuine is a nutritional regulator of Entamoeba histolytica response to oxidative stress and a virulence attenuator. MBio. 2021 Mar 9;12(2).

94.Sarid L, Zanditenas E, Ye J, et al. Insights into the mechanisms of Lactobacillus acidophilus activity against Entamoeba histolytica by using thiol redox proteomics. Antioxidants (Basel). 2022 Apr 22;11(5):814.

95.Ramos F, Moran P, Gonzalez E, et al. Entamoeba histolytica and Entamoeba dispar: prevalence infection in a rural Mexican community. Exp Parasitol. 2005 Jul;110(3):327–330.

96.Faqe Mahmood SA, Mustafa HB. Molecular identification and prevalence of Entamoeba histolytica, Entamoeba dispar and Entamoeba moshkovskii in Erbil City, Northern Iraq. Pol J Microbiol. 2020;69:1–10.

97.Davis PH, Schulze J, Stanley SL Jr. Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin. Mol Biochem Parasitol. 2007 Jan;151(1):118–128.

98.Davis PH, Zhang X, Guo J, et al. Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence. Mol Microbiol. 2006 Sep;61(6):1523–1532.

99.Nakada-Tsukui K, Sekizuka T, Sato-Ebine E, et al. AIG1 affects in vitro and in vivo virulence in clinical isolates of Entamoeba histolytica. PLOS Pathogens. 2018 Mar;14(3):e1006882.

100.Kumari V, Iyer LR, Roy R, et al. Genomic distribution of SINEs in Entamoeba histolytica strains: implication for genotyping. BMC Genomics. 2013 Jul 1;14:432.

101.Ali IK, Mondal U, Roy S, et al. Evidence for a link between parasite genotype and outcome of infection with Entamoeba histolytica. J Clin Microbiol. 2007 Feb;45(2):285–289.

102.Ayeh-Kumi PF, Ali IM, Lockhart LA, et al. Entamoeba histolytica: genetic diversity of clinical isolates from Bangladesh as demonstrated by polymorphisms in the serine-rich gene. Exp Parasitol. 2001 Oct;99(2):80–88.

103.Zaki M, Reddy SG, Jackson TF, et al. Genotyping of Entamoeba species in South Africa: diversity, stability, and transmission patterns within families. J Infect Dis. 2003 Jun 15;187(12):1860–1869.

104.Blessmann J, Ali IK, Nu PA, et al. Longitudinal study of intestinal Entamoeba histolytica infections in asymptomatic adult carriers. J Clin Microbiol. 2003 Oct;41(10):4745–4750.

105.Weedall GD, Clark CG, Koldkjaer P, et al. Genomic diversity of the human intestinal parasite Entamoeba histolytica. Genome bio. 2012 May 25;13(5):R38.

106.Gilchrist CA, Ali IK, Kabir M, et al. A Multilocus Sequence Typing System (MLST) reveals a high level of diversity and a genetic component to Entamoeba histolytica virulence. BMC Microbiol. 2012 Jul 27;12:151.

107.Das K, Sardar SK, Ghosal A, et al. Multilocus sequence typing (MLST) of Entamoeba histolytica identifies kerp2 as a genetic marker associated with disease outcomes. Parasitol Int. 2021 Aug;83:102370.

108.Santi-Rocca J, Rigothier MC, Guillen N. Host-microbe interactions and defense mechanisms in the development of amoebic liver abscesses. Clinical Microbiology Reviews. 2009 Jan;22(1):65–75.

109.Carrero JC, Reyes-Lopez M, Serrano-Luna J, et al. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int J Med Microbiol. 2020 Jan;310(1):151358.

110.Olivos A, Ramos E, Nequiz M, et al. Entamoeba histolytica: mechanism of decrease of virulence of axenic cultures maintained for prolonged periods. Exp Parasitol. 2005 Jul;110(3):309–312.

111.Olivos-Garcia A, Saavedra E, Nequiz M, et al. The oxygen reduction pathway and heat shock stress response are both required for Entamoeba histolytica pathogenicity. Curr Genet. 2016 May;62(2):295–300.

112.Olivos-Garcia A, Saavedra E, Ramos-Martinez E, et al. Molecular nature of virulence in Entamoeba histolytica. Infect Genet Evol. 2009 Dec;9(6):1033–1037.

113.Santos F, Nequiz M, Hernandez-Cuevas NA, et al. Maintenance of intracellular hypoxia and adequate heat shock response are essential requirements for pathogenicity and virulence of Entamoeba histolytica. Cell Microbiol. 2015 Jul;17(7):1037–1051.

114.Pineda E, Perdomo D. Entamoeba histolytica under oxidative stress: what countermeasure mechanisms are in place? Cells. 2017 Nov 21;6(4).

115.Ramos-Martinez E, Olivos-Garcia A, Saavedra E, et al. Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol. 2009 May;39(6):693–702.

116.Weber C, Koutero M, Dillies MA, et al. Extensive transcriptome analysis correlates the plasticity of Entamoeba histolytica pathogenesis to rapid phenotype changes depending o­n the environment. Sci Rep. 2016 Oct 21;6:35852.

117.Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones. 2018 May;23(3):303–315.

118.Dubrez L, Causse S, Borges Bonan N, et al. Heat-shock proteins: chaperoning DNA repair. Oncogene. 2020 Jan;39(3):516–529.

119.Santos F, Marcial-Quino J, Gomez-Manzo S, et al. Functional characterization and subcellular distribution of two recombinant cytosolic HSP70 isoforms from Entamoeba histolytica under normal and stress conditions. Parasitol Res. 2020 Apr;119(4):1337–1351.

120.Santi-Rocca J, Smith S, Weber C, et al. Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoS o­nE. 2012;7(2):e31777.

121.Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci USA. 2011 Mar 15;Suppl 108(supplement_1):4659–4665.

122.Ehrencrona E, van der Post S, Gallego P, et al. The IgGfc-binding protein FCGBP is secreted with all GDPH sequences cleaved but maintained by interfragment disulfide bonds. J Biol Chem. 2021 Jul;297(1):100871.

123.Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci Rep. 2022 May 19;12(1):8456.

124.Sicard JF, Le Bihan G, Vogeleer P, et al. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.

125.Moncada D, Keller K, Chadee K. Entamoeba histolytica-secreted products degrade colonic mucin oligosaccharides. Infect Immun. 2005 Jun;73(6):3790–3793.

126.Chadee K, Keller K, Forstner J, et al. Mucin and nonmucin secretagogue activity of Entamoeba histolytica and cholera toxin in rat colon. Gastroenterology. 1991 Apr;100(4):986–997.

127.Bansal D, Ave P, Kerneis S, et al. An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLoS negl trop dis. 2009 Nov 17;3(11):e551.

128.Martinez-Ocana J, Maravilla P, Olivo-Diaz A. Interaction between human mucins and parasite glycoproteins: the role of lectins and glycosidases in colonization by intestinal protozoa. Rev Inst Med Trop Sao Paulo. 2020 Sep 4;62:e64.

129.Riekenberg S, Flockenhaus B, Vahrmann A, et al. The beta-N-acetylhexosaminidase of Entamoeba histolytica is composed of two homologous chains and has been localized to cytoplasmic granules. Mol Biochem Parasitol. 2004 Dec;138(2):217–225.

130.Thibeaux R, Weber C, Hon CC, et al. Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLOS Pathogens. 2013;9(12):e1003824.

131.Nag M, Lahiri D, Garai S, et al. Regulation of beta-amylase synthesis: a brief overview. Mol Biol Rep. 2021 Sep;48(9):6503–6511.

132.Monroe JD, Storm AR, Badley EM, et al. Beta-Amylase1 and beta-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol. 2014 Dec;166(4):1748–1763.

133.Ma Y, Han Y, Feng X, et al. Genome-wide identification of BAM (beta-amylase) gene family in jujube (Ziziphus jujuba Mill.) and expression in response to abiotic stress. BMC Genomics. 2022 Jun 13;23(1):438.

134.Siqueira-Neto JL, Debnath A, McCall LI, et al. Cysteine proteases in protozoan parasites. PLoS negl trop dis. 2018 Aug;12(8):e0006512.

135.Moncada D, Keller K, Chadee K. Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun. 2003 Feb;71(2):838–844.

136.Lidell ME, Moncada DM, Chadee K, et al. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci USA. 2006 Jun 13;103(24):9298–9303.

137.Jacobs T, Bruchhaus I, Dandekar T, et al. Isolation and molecular characterization of a surface-bound proteinase of Entamoeba histolytica. Mol Microbiol. 1998 Jan;27(2):269–276.

138.Lechner AM, Assfalg-Machleidt I, Zahler S, et al. RGD-dependent binding of procathepsin X to integrin alphavbeta3 mediates cell-adhesive properties. J Biol Chem. 2006 Dec 22;281(51):39588–39597.

139.Hou Y, Mortimer L, Chadee K. Entamoeba histolytica cysteine proteinase 5 binds integrin o­n colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses. J Biol Chem. 2010 Nov 12;285(46):35497–35504.

140.Cornick S, Moreau F, Chadee K. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via alphavbeta3 Integrin. PLOS Pathogens. 2016 Apr;12(4):e1005579.

141.Shahi P, Moreau F, Chadee K. Entamoeba histolytica Cyclooxygenase-Like protein regulates cysteine protease expression and virulence. Front Cell Infect Microbiol. 2018;8:447.

142.Zanditenas E, Trebicz-Geffen M, Domínguez-García L, et al. Digestive exophagy of bacterial biofilms by an amoeba predator is mediated by specific biofilm recognition. bioRxiv. 2022. 2022.09.24.509356.

143.Thibeaux R, Dufour A, Roux P, et al. Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon. Cell Microbiol. 2012 May;14(5):609–621.

144.Thibeaux R, Ave P, Bernier M, et al. The parasite Entamoeba histolytica exploits the activities of human matrix metalloproteinases to invade colonic tissue. Nat Commun. 2014 Oct 7;5:5142.

145.Ankri S, Stolarsky T, Mirelman D. Antisense inhibition of expression of cysteine proteinases does not affect Entamoeba histolytica cytopathic or haemolytic activity but inhibits phagocytosis. Mol Microbiol. 1998 May;28(4):777-785.

146.Faust DM, Marquay Markiewicz J, Danckaert A, et al. Human liver sinusoidal endothelial cells respond to interaction with Entamoeba histolytica by changes in morphology, integrin signalling and cell death. Cell Microbiol. 2011 Jul;13(7):1091–1106.

147.Aguilar-Rojas A, Olivo-Marin JC, Guillen N. The motility of Entamoeba histolytica: finding ways to understand intestinal amoebiasis. Curr Opin Microbiol. 2016 Dec;34:24–30.

148.Ghosh S, Padalia J, Moonah S. Tissue destruction caused by Entamoeba histolytica parasite: cell death, inflammation, invasion, and the gut microbiome. Curr Clin Microbiol Rep. 2019;6(1):51–57.

149.Faust DM, Guillen N. Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect. 2012 Dec;14(15):1428–1441.

150.Seigneur M, Mounier J, Prevost MC, et al. A lysine- and glutamic acid-rich protein, KERP1, from Entamoeba histolytica binds to human enterocytes. Cell Microbiol. 2005 Apr;7(4):569-579.

151.MacFarlane RC, Singh U. Identification of an Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein with roles in adhesion and cytotoxicity. Eukaryot Cell. 2007 Nov;6(11):2139-2146.

152.Garcia-Rivera G, Rodriguez MA, Ocadiz R, et al. Entamoeba histolytica : a novel cysteine protease and an adhesin form the 112 kDa surface protein. Mol Microbiol. 1999 Aug;33(3):556-568.

153.Betanzos A, Banuelos C, Orozco E. Host invasion by pathogenic amoebae: epithelial disruption by parasite proteins. Genes (Basel). 2019 Aug 14;10(8).

154.Ralston KS. Taking a bite: amoebic trogocytosis in Entamoeba histolytica and beyond. Curr Opin Microbiol. 2015 Dec;28:26-35.

155.Nakada-Tsukui K, Nozaki T. Trogocytosis in unicellular eukaryotes. Cells. 2021 Nov 1;10(11).

156.Leon-Coria A, Kumar M, Moreau F, et al. Defining cooperative roles for colonic microbiota and Muc2 mucin in mediating innate host defense against Entamoeba histolytica. PLOS Pathogens. 2018 Nov;14(11):e1007466.

157.VanDussen KL, Samuelson LC. Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol. 2010 Oct 15;346(2):215–223.

158.Leon-Coria A, Kumar M, Workentine M, et al. Muc2 mucin and nonmucin microbiota confer distinct innate host defense in disease susceptibility and colonic injury. Cell Mol Gastroenterol Hepatol. 2021;11(1):77–98.

159.Watanabe N, Nakada-Tsukui K, Nozaki T. Diversity of phosphoinositide binding proteins in Entamoeba histolytica. Parasitol Int. 2021 Aug;83:102367.

160.Paradis T, Begue H, Basmaciyan L, et al. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int J Mol Sci. 2021 Mar 2;22(5):2506.

161.Lu Z, Ding L, Lu Q, et al. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 2013 Jul 1;1(3):e24978.

162.Lingaraju A, Long TM, Wang Y, et al. Conceptual barriers to understanding physical barriers. Semin Cell Dev Biol. 2015 Jun;42:13-21.

163.Otani T, Nguyen TP, Tokuda S, et al. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J cell Biol. 2019 Oct 7;218(10):3372–3396.

164.Cuellar P, Hernandez-Nava E, Garcia-Rivera G, et al. Entamoeba histolytica EhCP112 dislocates and degrades Claudin-1 and Claudin-2 at tight junctions of the intestinal epithelium. Front Cell Infect Microbiol. 2017;7:372.

165.Ocadiz-Ruiz R, Fonseca W, Linford AS, et al. The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence. Parasitology. 2016 Jan;143(1):50–59.

166.Hernandez-Nava E, Cuellar P, Nava P, et al. Adherens junctions and desmosomes are damaged by Entamoeba histolytica: participation of EhCPADH complex and EhCP112 protease. Cell Microbiol. 2017 Nov;19(11):e12761.

167.Lejeune M, Moreau F, Chadee K. Prostaglandin E2 produced by Entamoeba histolytica signals via EP4 receptor and alters claudin-4 to increase ion permeability of tight junctions. Am J Pathol. 2011 Aug;179(2):807–818.

168.Kissoon-Singh V, Moreau F, Trusevych E, et al. Entamoeba histolytica exacerbates epithelial tight junction permeability and proinflammatory responses in Muc2(-/-) mice. Am J Pathol. 2013 Mar;182(3):852–865.

169.Lauwaet T, Oliveira MJ, Callewaert B, et al. Proteinase inhibitors TPCK and TLCK prevent Entamoeba histolytica induced disturbance of tight junctions and microvilli in enteric cell layers in vitro. Int J Parasitol. 2004 Jun;34(7):785-794.

170.Marie C, Verkerke HP, Theodorescu D, et al. A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica. Sci Rep. 2015 Sep 8;5:13613.

171.Aggarwal S, Ahuja V, Paul J. Attenuated GABAergic signaling in intestinal epithelium contributes to pathogenesis of ulcerative colitis. Dig Dis Sci. 2017 Oct;62(10):2768–2779.

172.Shen XM, Okuno T, Milone M, et al. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. Human mutation. 2016 Oct;37(10):1051–1059.

173.Cheng Z, Bai Y, Wang P, et al. Identification of long noncoding RNAs for the detection of early stage lung squamous cell carcinoma by microarray analysis. Oncotarget. 2017 Feb 21;8(8):13329–13337.

174.Low END, Mokhtar NM, Wong Z, et al. Colonic mucosal transcriptomic changes in patients with long-duration ulcerative colitis revealed colitis-associated cancer pathways. J Crohn’s Colitis. 2019 May 27;13(6):755–763.

175.Bouameur JE, Favre B, Borradori L. Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases. J Invest Dermatol. 2014 Apr;134(4):885–894.

176.Arhets P, Olivo JC, Gounon P, et al. Virulence and functions of myosin II are inhibited by overexpression of light meromyosin in Entamoeba histolytica. ?Mol Biol Cell. 1998 Jun;9(6):1537–1547.

177.Jaganathan D, Bruscia EM, Kopp BT. Emerging concepts in defective macrophage phagocytosis in cystic fibrosis. Int J Mol Sci. 2022 Jul 13;23(14):7750.

178.Iyer LR, Verma AK, Paul J, et al. Phagocytosis of gut bacteria by Entamoeba histolytica. Front Cell Infect Microbiol. 2019;9:34.

179.Marion S, Guillen N. Genomic and proteomic approaches highlight phagocytosis of living and apoptotic human cells by the parasite Entamoeba histolytica. Int J Parasitol. 2006 Feb;36(2):131–139.

180.Ralston KS, Solga MD, Mackey-Lawrence NM, et al. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature. 2014 Apr 24;508(7497):526–530.

181.Miller HW, Suleiman RL, Ralston KS. Trogocytosis by Entamoeba histolytica mediates acquisition and display of human cell membrane proteins and evasion of lysis by human serum. MBio. 2019 Apr 30;10(2)/mBio.00068-19.

182.Miller HW, Tam TSY, Ralston KS. Entamoeba histolytica develops resistance to complement deposition and lysis after acquisition of human complement-regulatory proteins through trogocytosis. MBio. 2022 Apr 26;13(2):e0316321.

183.Somlata NTK, Nozaki T. AGC family kinase 1 participates in trogocytosis but not in phagocytosis in Entamoeba histolytica. Nat Commun. 2017 Jul 17;8(1):101.

184.Bharadwaj R, Kushwaha T, Ahmad A, et al. An atypical EhGEF regulates phagocytosis in Entamoeba histolytica through EhRho1. PLOS Pathogens. 2021 Nov;17(11):e1010030.

185.Huston CD, Houpt ER, Mann BJ, et al. Caspase 3-dependent killing of host cells by the parasite Entamoeba histolytica. Cell Microbiol. 2000 Dec;2(6):617–625.

186.Lee YA, Kim KA, Min A, et al. Amoebic PI3K and PKC is required for Jurkat T cell death induced by Entamoeba histolytica. Korean J Parasitol. 2014 Aug;52(4):355–365.

187.Lopez-Rosas I, Lopez-Camarillo C, Salinas-Vera YM, et al. Entamoeba histolytica up-regulates MicroRNA-643 to promote apoptosis by targeting XIAP in human epithelial colon cells. Front Cell Infect Microbiol. 2018;8:437.

188.Maia BM, Rocha RM, Calin GA. Clinical significance of the interaction between non-coding RNAs and the epigenetics machinery: challenges and opportunities in o­ncology. Epigenetics. 2014 Jan;9(1):75–80.

189.Yuan C, Burns MB, Subramanian S, et al. Interaction between host MicroRnas and the gut microbiota in colorectal cancer. mSystems. 2018 May-Jun;3(3).00205-17

190.Liu S, Rezende RM, Moreira TG, et al. Oral administration of miR-30d from Feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphila. Cell Host Microbe. 2019 Dec 11;26(6):779–794 e8.

191.Ayala-Sumuano JT, Tellez-Lopez VM, Dominguez-Robles Mdel C, et al. Toll-like receptor signaling activation by Entamoeba histolytica induces beta defensin 2 in human colonic epithelial cells: its possible role as an element of the innate immune response. PLoS negl trop dis. 2013;7(2):e2083. DOI:10.1371/journal.pntd.0002083

192.Preet S, Bharati S, Shukla G, et al. Evaluation of amoebicidal potential of Paneth cell cryptdin-2 against Entamoeba histolytica. PLoS negl trop dis. 2011 Dec;5(12):e1386.

193.Seydel KB, Li E, Swanson PE, et al. Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis. Infect Immun. 1997 May;65(5):1631–1639.

194.Peterson KM, Guo X, Elkahloun AG, et al. The expression of REG 1A and REG 1B is increased during acute amebic colitis. Parasitol Int. 2011 Sep;60(3):296–300.

195.Begum S, Moreau F, Leon Coria A, et al. Entamoeba histolytica stimulates the alarmin molecule HMGB1 from macrophages to amplify innate host defenses. Mucosal Immunol. 2020 Mar;13(2):344–356.

196.Allaire JM, Crowley SM, Law HT, et al. The Intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018 Sep;39(9):677–696.

197.Allaire JM, Crowley SM, Law HT, et al. The Intestinal epithelium: central coordinator of mucosal immunity: (Trends in Immunology 39, 677-696, 2018). Trends Immunol. 2019 Feb;40(2):174.

198.Burdette BE, Esparza AN, Zhu H, et al. Gasdermin D in pyroptosis. Acta Pharm Sin B. 2021 Sep;11(9):2768–2782.

199.Maldonado-Bernal C, Kirschning CJ, Rosenstein Y, et al. The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4. Parasite Immunol. 2005 Apr;27(4):127–137.

200.Mortimer L, Moreau F, Cornick S, et al. The NLRP3 inflammasome is a pathogen sensor for invasive Entamoeba histolytica via activation of alpha5beta1 Integrin at the macrophage-amebae intercellular junction. PLOS Pathogens. 2015 May;11(5):e1004887.

201.Quach J, Moreau F, Sandall C, et al. Entamoeba histolytica-induced IL-1beta secretion is dependent o­n caspase-4 and gasdermin D. Mucosal Immunol. 2019 Mar;12(2):323–339.

202.Dickson-Gonzalez SM, de Uribe ML, Rodriguez-Morales AJ. Polymorphonuclear neutrophil infiltration intensity as consequence of Entamoeba histolytica density in amebic colitis. Surg Infect (Larchmt). 2009 Apr;10(2):91–97.

203.Denis M, Chadee K. Human neutrophils activated by interferon-gamma and tumour necrosis factor-alpha kill Entamoeba histolytica trophozoites in vitro. J Leukoc Biol. 1989 Sep;46(3):270-274.

204.Sim S, Yong TS, Park SJ, et al. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. J Immunol. 2005 Apr 1;174(7):4279-4288.

205.Watanabe K, Gilchrist CA, Uddin MJ, et al. Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis. PLOS Pathogens. 2017 Aug;13(8):e1006513.

206.Avila EE, Salaiza N, Pulido J, et al. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan trigger human neutrophil extracellular traps. PLoS o­nE. 2016;11(7):e0158979.

207.Diaz-Godinez C, Fonseca Z, Nequiz M, et al. Entamoeba histolytica Trophozoites induce a rapid non-classical NETosis mechanism independent of NOX2-derived reactive oxygen species and PAD4 activity. Front Cell Infect Microbiol. 2018;8:184.

208.Fonseca Z, Diaz-Godinez C, Mora N, et al. Entamoeba histolytica induce signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) formation. Front Cell Infect Microbiol. 2018;8:226.

209.Blazquez S, Zimmer C, Guigon G, et al. Human tumor necrosis factor is a chemoattractant for the parasite Entamoeba histolytica. Infect Immun. 2006 Feb;74(2):1407–1411.

210.Silvestre A, Plaze A, Berthon P, et al. In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor. Microb Cell. 2015 Jul 6;2(7):235–246.

211.Noor Z, Watanabe K, Abhyankar MM, et al. Role of eosinophils and tumor necrosis factor alpha in Interleukin-25-mediated protection from Amebic Colitis. MBio. 2017 Feb 28;8(1). doi :10.1128/mBio.02329-16.

212.Uddin MJ, Leslie JL, Burgess SL, et al. The IL-33-ILC2 pathway protects from amebic colitis. Mucosal Immunol. 2022 Jan;15(1):165–175.

213.Duggal P, Haque R, Roy S, et al. Influence of human leukocyte antigen class II alleles o­n susceptibility to Entamoeba histolytica infection in Bangladeshi children. J Infect Dis. 2004 Feb 1;189(3):520–526.

214.Wojcik GL, Marie C, Abhyankar MM, et al. Genome-wide association study reveals genetic link between diarrhea-associated Entamoeba histolytica infection and Inflammatory Bowel disease. MBio. 2018 Sep 18;9(5).

215.Verkerke HP, Petri WA Jr., Marie CS. The dynamic interdependence of amebiasis, innate immunity, and undernutrition. Semin Immunopathol. 2012 Nov;34(6):771–785.

216.Duggal P, Guo X, Haque R, et al. A mutation in the leptin receptor is associated with Entamoeba histolytica infection in children. J Clin Invest. 2011 Mar;121(3):1191–1198.

217.Petri WA Jr., Mondal D, Peterson KM, et al. Association of malnutrition with amebiasis. Nutr Rev. 2009 Nov;67 Suppl 2:S207–15.

218.Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat. 2019 May;44:1–14.

219.Juarez-Saldivar A, Campillo NE, Ortiz-Perez E, et al. In Silico analysis of potential drug targets for Protozoan infections. Med Chem. 2022 Aug 16.

220.Shrivastav MT, Malik Z. Revisiting drug development against the neglected tropical disease, Amebiasis. Front Cell Infect Microbiol. 2020;10:628257.

221.Kangussu-Marcolino MM, Singh U. Ponatinib, Lestaurtinib, and mTOR/PI3K Inhibitors are promising repurposing candidates against Entamoeba histolytica. Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0120721.

Ngày 25/06/2024
CN. Nguyễn Thái Hoàng & TS.BS. Huỳnh Hồng Quang
(Viện Sốt rét-KST-CT Quy Nhơn)
 

THÔNG BÁO

   Dịch vụ khám chữa bệnh chuyên khoa của Viện Sốt rét-KST-CT Quy Nhơn khám bệnh tất cả các ngày trong tuần (kể cả thứ 7 và chủ nhật)

   THÔNG BÁO: Phòng khám chuyên khoa Viện Sốt rét-KST-CT Quy Nhơn xin trân trọng thông báo thời gian mở cửa hoạt động trở lại vào ngày 20/10/2021.


 LOẠI HÌNH DỊCH VỤ
 CHUYÊN ĐỀ
 PHẦN MỀM LIÊN KẾT
 CÁC VẤN ĐỀ QUAN TÂM
 QUẢNG CÁO

Trang tin điện tử Viện Sốt rét - Ký Sinh trùng - Côn trùng Quy Nhơn
Giấy phép thiết lập số 53/GP - BC do Bộ văn hóa thông tin cấp ngày 24/4/2005
Địa chỉ: Khu vực 8-Phường Nhơn Phú-Thành phố Quy Nhơn-Tỉnh Bình Định.
Tel: (84) 0256.3846.892 - Fax: (84) 0256.3647464
Email: impequynhon.org.vn@gmail.com
Trưởng Ban biên tập: TTND.PGS.TS. Hồ Văn Hoàng-Viện trưởng
Phó Trưởng ban biên tập: TS.BS.Huỳnh Hồng Quang-Phó Viện trưởng
• Thiết kế bởi công ty cổ phần phần mềm: Quảng Ích