Home TRANG CHỦ Thứ 6, ngày 19/04/2024
    Hỏi đáp   Diễn đàn   Sơ đồ site     Liên hệ     English
IMPE-QN
Web Sites & Commerce Giới thiệu
Web Sites & Commerce Tin tức - Sự kiện
Web Sites & Commerce Hoạt động hợp tác
Web Sites & Commerce Hoạt động đào tạo
Finance & Retail Chuyên đề
Dịch tễ học
Côn trùng học
Nghiên cứu lâm sàng & điều trị
Ký sinh trùng sốt rét
Ký sinh trùng
Sinh học phân tử
Sán lá gan
Sốt xuất huyết
Bệnh do véc tơ truyền
Vi khuẩn & Vi rút
Sán
Giun
Nấm-Đơn bào
Web Sites & Commerce Tư vấn sức khỏe
Web Sites & Commerce Tạp chí-Ấn phẩm
Web Sites & Commerce Thư viện điện tử
Web Sites & Commerce Hoạt động Đảng & Đoàn thể
Web Sites & Commerce Bạn trẻ
Web Sites & Commerce Văn bản pháp quy
Số liệu thống kê
Web Sites & Commerce An toàn thực phẩm & hóa chất
Web Sites & Commerce Thầy thuốc và Danh nhân
Web Sites & Commerce Ngành Y-Vinh dự và trách nhiệm
Web Sites & Commerce Trung tâm dịch vụ
Web Sites & Commerce Thông báo-Công khai
Web Sites & Commerce Góc thư giản

Tìm kiếm

Đăng nhập
Tên truy cập
Mật khẩu

WEBLINKS
Website liên kết khác
 
 
Số lượt truy cập:
5 2 4 5 5 0 0 2
Số người đang truy cập
3 7 2
 Chuyên đề Côn trùng học
Cập nhật về thông tin nhậy kháng hóa chất diệt côn trùng trên thế giới

Theo Tổ chức Y tế thế giới (WHO), kháng hóa chất diệt côn trùng khả năng côn trùng sống sót sau khi tiếp xúc/phơi nhiễm với hóa chất diệt côn trùng ở liều lượng mà trước đó côn trùng chết, những cá thể kháng hóa chất sống sót được tồn tại và phát triển bằng cách chọn lọc tự nhiên và đột biến. Hiện nay, có hơn 500 loài côn trùng trên thế giới đã kháng với hóa chất diệt côn trùng, trong đó có hơn 50 loài muỗi sốt rét Anopheles đóng vai trò trung gian truyền bệnh.

Tình hình kháng hóa chất diệt côn trùng của các véc tơ sốt rét trên thế giới

Kháng hóa chất diệt côn trùng đã được báo cáo ở các véc tơ sốt rét chính trên toàn thế giới. Tuy nhiên tình trạng muỗi kháng với hóa chất phân bố không đồng đều giữa các véc tơ và có thể khác nhau rất lớn giữa các làng, tỉnh, quốc gia, khu vực và châu lục trên phạm vi toàn cầu. Song, có một vấn đề đáng báo động đó là muỗi kháng hóa chất diệt côn trùng mức cao nhất được báo cáo xảy ra ở châu Phi, nơi gánh nặng sốt rét vẫn cao nhất trên thế giới. Pyrethroid - một nhóm hóa chất diệt côn trùng được xem là “tiêu chuẩn vàng” trong việc sử dụng cho màn tẩm hóa chất tồn lưu lâu dài (Long lasting insecticide treated nets-LLINs) và phun tồn lưu trong nhà (Indoor residual spraying-IRS). Chính việc sử dụng rộng rãi hóa chất diệt côn trùng đã làm cho quần thể muỗi sốt rét kháng và đe dọa những thành tựu đã đạt được trong việc kiểm soát bệnh sốt rét.

Trong phần này, chúng tôi sẽ giới thiệu về tình hình muỗi kháng với hóa chất diệt côn trùng thuộc nhóm pyrethroid trên thế giới qua tổng hợp.

 
 
                        Hình 1. Kháng hóa chất diệt côn trùng trên thế giới

Khu vực châu Phi

Mặc dù sự xuất hiện kháng hóa chất diệt côn trùng ở các véc tơ sốt rét tại châu Phi không phải là một sự kiện mới, sự lây lan kháng pyrethroid gần đây phát triển ở các quần thể muỗi sốt rét rất đáng lo ngại vì nó có thể đe dọa đối với các sáng kiến hiện tại để kiểm soát các véc tơ sốt rét đang được triển khai ở châu lục này. Kháng với hóa chất nhóm pyrethroid phổ biến ở các loài muỗi Anopheles sp. nhưng phân bố kháng hóa chất với nhóm pyrethroid không đều giữa các quốc gia.

Trong số 49 quốc gia châu Phi đã được điều tra, đến 15 quốc gia không có bất kỳ báo cáo nào về tình trạng kháng hóa chất diệt côn trùng trong vòng 10 năm qua như Algeria, Botswana, Congo, Djibouti, Sierra Leone, Lesotho, Liberia, Libya, Maurice, Mauritania, Namibia, Rwanda, Somalia, Swaziland, Tunisia. Nếu có, rất nhiều số liệu kháng hóa chất đã được báo cáo ở Tây Phi (như xa như An gambiae.s.l. là có liên quan ), thì thiếu thông tin về kháng hóa chất ở Trung, Đông và Nam châu Phi.

Có sự khác biệt rõ ràng về số liệu kháng hóa chất trong những thập kỷ qua ở một số nước châu Phi điều này đã gây khó khăn trong việc tiến hành điều tra theo dõi thường xuyên được thực hiện bởi chương tình phòng chống sốt rét quốc gia (National Malaria Control Programme - NMCP), Tổ chức quốc tế như WHO/ANVR và các tổ chức nghiên cứu khác.

Trên toàn cầu, loài muỗi An. gambiae s.l. kháng pyrethroid cao ở Tây Phi bao gồm các quốc gia như Benin, Burkina Faso, Guinea Konakry, Ghana, Mali, Niger, Nigeria và Bờ biển Ngà (Cote d'Ivoire). Trong khu vực này, kháng pyrethroid là yếu tố nổi bật ở loài An. gambiae s.s. hơn so với loài An. arabiensis. Điều đáng ngạc nhiên đó là muỗi nhạy với pyrethroid (Permethrin và/ hoặc Deltamethrin) đã được báo cáo ở loài An. gambiae s.l. tại Guinea-Bissau, mặc dù có sự hiện diện của đột biến L1014F. Ở Trung Phi, muỗi kháng/ tăng sức chịu đựng với nhóm hóa chất pyrethroid phổ biến ở loài muỗi An. gambiae sl xảy ở các quốc gia gồm Cameroon, Chad, Gabon, Guinea xích đạo và Sudan. Tại Chad, Cameroon và bắc Sudan, hiện nay kháng pyrethroid cơ bản xảy ra ở loài muỗi An. arabiensis, điều này phù hợp với sự phổ biến của loài muỗi này ở nhiều khu vực khô cằn có nhiệt độ trung bình hàng năm cao hơn. Ở Đông và phía Nam châu Phi, hầu hết quần thể muỗi An. gambiaeAn. arabiensis còn nhạy với pyrethroid ở Tanzania, Mozambique và Madagascar, nhưng kháng cao ở miền đông Uganda, Ethiopia, Kenya, Zambia, Nam Phi và Gwave khu vực của Zimbabwe.

Đối với loài muỗi An. funestus, hầu hết các tài liệu báo cáo kháng pyrethroid đều xảy ra Nam Phi và Mozambique bởi vì loài muỗi An. funestus là véc tơ sốt rét chính ở các nước này. Các dữ liệu hiện tại ở các quốc gia nước châu Phi khác là rất hạn chế, trong đó một phần là do những khó khăn để duy trì loài muỗi An. funestus trong phòng thí nghiệm. Muỗi kháng hoặc tăng sức chịu đựng đã được phát hiện ở Malawi và nghi ngờ ở khu vực Obusi và Kassena - Nankana của Ghana và Benin, những nơi mà hầu hết muỗi nhạy với Permethrin và Deltamethrin đã được tìm thấy ở Burkina Faso và Tanzania. Thiếu thông tin về kháng hóa chất diệt côn trùng của các véc tơ sốt rét phụ như loài An. mouchetiAn. nili điều này có thể đóng vai trò quan trọng trong lan truyền bệnh sốt rét ở các quốc gia như Cameroon, Congo, Bờ Biển Ngà. Đối với các loài véc tơ khác, hầu hết các loài muỗi đều nhạy cảm với pyrethroids đã được báo cáo ở loài An. labranchiae tại Ma-rốc và loài An. pharoensis ở Ai Cập và Ethiopia.

 

Ở châu Phi, đột biến L1014F rất phổ biến (hình 2) và chiếm ưu thế ở dạng phân tử S so với dạng M, ngoại trừ ở Benin, Guinea Xích Đạo và Niger. Một số tác giả cho rằng các alen kdr có thể đã xuất hiện từ ít nhất bốn sự kiện đột biến độc lập ở dạng S của loài An. gambiae. Đối với dạng M, có một vấn đề không rõ ràng liệu đột biến kdr là kết quả chuyển gen từ hình thức S hoặc từ sự kiện đột biến độc lập, gần đây đã đề nghị ở đảo Bioko. Đột biến thứ hai, là đột biến thay leucine thành serine ở vị trí codon tương tự (L1014S), được xác định lần đầu tiên ở dòng An. gambiae s.l. từ Kenya. Sự thay thế này đã được báo cáo gần đây ở Burundi, Cameroon, Gabon, Guinea Xích Đạo, Uganda, Congo và Angola, phần lớn xảy ra cùng lúc với alen kdr 1014F. Mặc dù một số tác giả đã thông báo rằng các alen 1014S có thể có mức độ kháng pyrethroid thấp hơn so với alen 1014F và kháng hóa chất này đã lây lan từ Đông Phi đến Trung Phi và gần đây hơn đến Tây Phi. Một giả thuyết đề nghị rằng muỗi có điều kiện sống thuận lợi sẽ chia sẽ các đột biến kháng hóa chất này cho các cá thể muỗi khác với sự có mặt của pyrethroid.

Cho đến nay, sự thay thế L1014S luôn luôn được phát hiện ở dạng phân tử S nhưng những phát hiện gần đây cho thấy sự xuất hiện của các alen 1014S ở dạng phân tử M ở Equatorial Guinea và Cameroon. Ở hai quốc gia này, alen 1014S có mặt ở tần số rất thấp, hoặc chỉ riêng alen 1014S hoặc kết hợp với alen L1014F. Hiện nay không thể biết được các alen kdr đã xuất hiện đầu tiên ở Cameroon hay Equatorial Guinea. Tần số xuất hiện của alen 1014S ở dạng S cao hơn so với dạng M hoặc có thể được quy cho là do sự chuyển đổi gen từ đơn vị phân loại S hoặc một đột biến de novo. Đối với loài anh chị em An. arabiensis, cả hai đột biến đã được báo cáo ở Tây, Trung và Đông Phi.

 

Điều thú vị là một đột biến mới kdr (N1575Y) xảy ra ở phạm vi III-IV của cổng điện áp kênh natri đã được tìm thấy ở cả hai dạng phân tử S và M của muỗi An. gambiae và chỉ xảy ra trên một vị trí đơn thuần không được chú ý 1014F. Ngoài ra kháng 1575Y đã được chứng minh đối với permethrin và DDT ở cả hai dạng phân tử của loài An. gambiae. Sự phổ biến của đột biến 1575Y đã gia tăng ở Tây Phi trong những năm qua vì thế chỉ ra rằng trên cùng một vị trí 1014F - 1575Y là áp lực chọn lọc mạnh mẽ. nó có thể bên cạnh đột biến kdr 1014F/1014S, các đột biến khác ở đoạn gen kênh loại natri có thể cần thiết cho muỗi tồn tại sau khi tiếp xúc phân biệt với nồng độ hóa chất diệt côn trùng. Do vậy tiến hành điều tra thêm là điều cần thiết để xác định vi trí phân bố và vai trò của đột biến N1575Y trong kháng pyrethroid cũng như đánh giá lợi ích thích hợp theo alen này trên đột biến L1014F ở các véc tơ sốt rét.

 

Ngoài sự lây lan của alen kdr, kháng chuyển hóa dựa trên các enzym phân giải độc cụ thể là oxidase, GST (epsilon) và họ CCE đã mở rộng ở các véc tơ sốt rét ở châu Phi. An. gambiae s.l. kháng chuyển hóa liên quan đến mức tăng P450 đã được báo cáo ít nhất tại Kenya, Cameroon, Benin, Nigeria, Ghana, Mozambique, Nam Phi và Zimbabwe.

Cho đến nay, chỉ có gen mã hóa CYP6P3 và CYP6M2. Enzym P450 đã được tham gia rõ ràng trong cơ cấu tế bào được biết đến chuyển hóa deltamethrin và permethrin. Những gen này được tìm thấy trong các trường hợp muỗi kháng pyrethroid ở các quần thể An. gambiae từ Benin, Nigeria và Ghana, chủ yếu là cùng liên quan đến với alen kdr L1014F. Loài muỗi An. funestus, kháng pyrethroid liên quan đến tăng hoạt tính của P450 monooxygenase hoặc GST đã được chứng minh ở Nam Phi và Mozambique.

Như vậy, thách thức to lớn ở châu Phi không chỉ quản lý và kiểm soát muỗi kháng kdr mà còn đối với sự phát triển quần thể muỗi “đa kháng” có thể chống lại các nhóm hóa chất diệt côn trùng khác nhau đang được sử dụng trong y tế cộng đồng.

Một vấn đề khác đó là sự xuất hiện và phát triển kháng carbamate ở một số quốc gia (ví dụ như Benin, Nigeria) nơi lớp hóa chất này được sử dụng cho phun tồn lưu trong nhà (IRS) thông qua chương trình PMI (President’s Malaria Initiative- PMI).

Sự lây lan kháng carbamate ở các véc tơ sốt rét tại châu Phi là rất đáng lo ngại đối với quản lý kháng hóa chất diệt côn trùng, thay thế hóa chất, và đổi mới các chiến lược là rất cần thiết và khẩn trương để làm giảm khả năng kháng của muỗi, do đó làm giảm gánh nặng do bệnh sốt rét gây ra ở khu vực.

 
            Hình 2: Bản đồ phân bố kháng pyrethroid ở các véc tơ sốt rét châu Phi;
                 A. Tình hình kháng pyrethroi theo tiêu chuẩn WHO;
                 B. Kháng chuyển hóa và kháng vị trí đích được báo cáo ở một số loài muỗi


Khu vực Đông Nam Á và Ấn Độ

Khu vực Đông Nam Á (South East Asia Region_SEAR) chiếm 13% tổng số các trường hợp mắc bệnh sốt rét trên toàn cầu (tỷ lệ mắc bệnh đứng thứ 2 sau châu Phi) và nhiều trường hợp kháng hóa chất cũng đã phát hiện ở các loài véc tơ sốt rét chính.

Ở khu vực sông Mekong, giám sát kháng hóa chất diệt côn trùng xuyên quốc gia đã được tiến hành thông qua mạng lưới giám sát kháng hóa chất diệt côn trùng MALVECASIA để giúp chương trình phòng chống sốt rét (MCP_Malaria Control Programme) trong việc lựa chọn hóa chất diệt côn trùng sử dụng ở cấp độ khu vực. Sự khác biệt lớn về tình trạng kháng hóa chất diệt côn trùng đã được quan sát giữa các loài và các quốc gia. Loài Anopheles dirus s.s. là véc tơ chính truyền bệnh sốt rét ở vùng rừng núi - nơi có sốt rét lưu hành nặng, hầu hết loài muỗi này vẫn còn nhạy với permethrin ngoại trừ miền Trung, Việt Nam, nơi đã phát hiện kháng các loại hóa chất thuộc nhóm pyrethroids loại II. Quần thể muỗi An. minimus s.l. đã được tìm thấy kháng hoặc có khả năng kháng ở Việt Nam và phía Bắc Thái Lan, nhưng chúng hầu như vẫn còn nhạy tại Campuchia và Lào.

Cho đến nay, chưa phát hiện đột biến kdr ở các loài này và kháng pyrethroid dường như là kết quả tăng giải độc bởi enzyme esteraza, hoặc enzyme monooxygenases P450. Do vậy, tăng biểu hiện mRNA của hai gen P450, CYP6P7 và CYP6AA3, nghi ngờ chúng có khả năng chuyển hóa một số hợp chất thuộc nhóm pyrethroids đã được báo cáo ở quần thể muỗi An. minimus kháng deltamethrine tại Thái Lan.

Anopheles epiroticus của phức hợp An. sundaicus ở khu vực đồng bằng sông Cửu Long có khả năng kháng cao với tất cả hóa chất nhóm pyrethroid những vẫn còn nhạy với DDT, ngoại trừ khu vực gần thành phố Hồ Chí Minh. Quần thể muỗi An. subpictus kháng với DDT và pyrethroid đã được báo cáo tại Việt Nam và Camphuchia. Xét nghiệm sinh hóa cho thấy enzyme esterase làm trung hòa độc tố pyrethroid ở cả hai loài An. epiroticusAn. subpictus trong khi đó kháng DDT ở An. subpictus có thể là do enzyme GST hoạt động cao hơn.

 

Tại Việt Nam và Campuchia, mức độ kháng với pyrethroid khác nhau ở hai loài muỗi An. vagusAn. sinensis và phân tích trình tự DIIS6 khu vực VGSC phát hiện sự có mặt của alen kdr 1014S. Quần thể muỗi An. sinensis kháng pyrethroid cũng đã được báo cáo ở Hàn Quốc và Trung Quốc. Tại Trung Quốc, kháng Cypermethrin ở loài An. sinensis có liên quan đến sự hiện diện thay thế cả 1014F và L1014C, trong khi đó chỉ có đột biến 1014F được tìm thấy ở Hàn Quốc và 1014S được tìm thấy ở Việt Nam.

Ở Indonesia khi phân tích phân tử được thực hiện ở các mẫu vật thu thập ngoài thực địa phát hiện sự có mặt của đột biến 1014F ở cả 4 véc tơ sốt rét chính gồm An. sundaicus, An. aconitus, An. subpictusAn. vagus. Tại thời điểm này, rất khó để suy đoán mối liên quan đóng góp của đột biến kdr so với khử độc (metabolic detoxification) đối với nhóm hoạt chất pyrethroid và kháng DDT ở các véc tơ sốt rét ở khu vực Đông Nam và cần tiến hành nhiều nghiên cứu hơn nữa là điều cần thiết để thiết lập xu hướng rõ ràng.

 
           Hình 3. Các véc tơ sốt rét ở khu vực Đông Nam Á và Thái Bình Dương

Kháng hóa chất diệt côn trùng được biết đến là rất phổ biến ở nhiều khu vực khác nhau của châu Á như Ấn Độ. Tại Ấn Độ kháng hóa chất diệt côn trùng có lịch sử lâu dài và nó là một thách thức quan trọng đối với kiểm soát véc tơ sốt rét. Trong số các loài muỗi Anopheles, thì loài An. culicifacies s.l.,là véc tơ chính trong lan truyền sốt rét hầu hết các vùng khác nhau của Ấn Độ, loài muỗi này đã kháng cao đốivới pyrethroids, DDT, dieldrin/HCH và Malathion.

Đột biến 1014F, tạo ra kiểu hình kdr đã được phát hiện đối vói nhóm hóa chất pyrethroid và quần thể muỗi An. culicifacies s.l. kháng DDT đôi khi xuất hiện cùng lúc với sự biến đổi 1014S. Lưu ý rằng một đột biến V1010L mới (kết quả chuyển đổi từ G sang T hoặc C) ở VGSC gần đây đã được xác định ở An. culicifacies tại Ấn Độ và đã được liên kết chặt chẽ để thay thế 1014S. Hoạt tính cao của men GST dường như cũng là một vai trò quan trọng trong kháng DDT ở loài muỗi này. Tương tự như vậy, mức độ kháng pyrethroid cao do sự hiện diện của cả đột biến 1014F và 1014S đã được tìm thấy ở véc tơ sốt rét An. stephensi khu vực đô thị đặc biệt là ở các huyện Rajasthan.

Các loài véc tơ sốt rét khác được báo cáo kháng với pyrethroid, DDT và/hoặc Dieldrin/HCH ở Ấn Độ bao gồm An. annularis, An. subpictusAn. philippinensis. Ngược lại, An. minimus vẫn không cho thấy kháng với pyrethroid và DDT.

Xu hướng tương tự cũng đã được ghi nhận ở Sri Lanka nơi mà các véc tơ sốt rét chính như An. culificifacies s.l.An. subpictus đã phát triển tính kháng với DDT, pyrethroid và malathion ở một số huyện. Tuy nhiên, các cơ chế chính liên quan đến kháng DDT và malathion ở cả loài An. culicifacies s.l.An. subpictus chủ yếu là trao đổi chất và liên quan đến enzyme carboxylesterases (malathion) hoặc monooxygenases và GSTs (DDT). Một thay đổi do men acetylcholinesterase chuyển sang kháng lân hữu cơ đã bị nghi ngờ ở cả hai loài véc tơ.

Ở khu vực đồng bằng của Bangladesh, An. sundaicus là véc tơ sốt rét còn rất nhạy với DDT nhưng các véc tơ sốt rét khác như loài An. philippinensis, An. maculatus s.l.,An. aconitus thì tất cả đã phát triển kháng DDT. Ngoài ra còn có loài An. aconitus cũng đã được báo cáo kháng với dieldrin/HCH. Bhutan ghi nhận loài An. maculatus s.l. đã kháng với DDT, nhưng chưa ghi nhận loài muỗi này kháng với bất kỳ hóa chất diệt côn trùng nào khác.

Hai véc tơ sốt rét ở Nepal bao gồm An. maculatus s.l.An. aconitus, cũng đã kháng với DDT, trong khi đó kháng malathion chỉ được báo cáo ở loài An. stephensi ở Pakistan. Cuối cùng, ở Iran và Thổ Nhĩ Kỳ cả hai loài An. stephensiAn. sacharovi đã kháng với DDT và dieldrin nhưng cả hai loài muỗi này hầu hết vẫn còn nhạy với pyrethroids.

Khu vực châu Mỹ La tinh

Các quốc gia thuộc lưu vực sông Amazon (Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, Surinam và Venezuela)là những nước có gánh nặng bệnh sốt rét lớn nhất ở châu Mỹ. Các véc tơ chính ở lưu vực sông Amazon gồm An. darlingiAn. albimanus. Nhưng điều đáng ngạc nhiên khi dữ liệu về kháng hóa chất diệt côn trùng của hai véc tơ này rất ít so với các véc tơ sốt rét ở châu Phi và châu Á.

Ở Colombia, kháng DDT đã được báo cáo vào cuối những năm 1980 ở một số quần thể muỗi An. darlingi ở các huyện của Quibdó và gần sông Atrato. Thường xuyên kiểm tra tính nhạy cảm với hóa chất diệt côn trùng đã phát hiện ra, cả hai loài An. darlingiAn. albimanus kháng với pyrethroids chủ yếu ở bang Chocó.

Đối với loài muỗi An. darlingi, gia tăng các mức độ của cả đa chức năng Oxidase (MFO) và esterase không đặc hiệu (NSE) đã được báo cáo ở quần thể muỗi kháng deltamethrin và DDT, do đó cho thấy có thể có sự tham gia của các enzym giải độc trong kháng chéo với DDT và deltamethrin. Lưu ý rằng các mức độ kháng khác nhau đối với phosphate hữu cơ và pyrethroid cũng đã được báo cáo ở véc tơ sốt rét phụ An. nuneztovari.

Ở các nước láng giềng, kháng DDT, permethrin và deltamethrin đã được phát hiện ở các quần thể An. albimanus trong phòng thí nghiệm ở Guatemala, trong khi đó hầu hết nó vẫn còn nhạy với các quần thể muỗi ngoài thực địa ở El Salvador và Belize.

Các dòng muỗi ở Guatemala cho thấy một sự gia tăng đáng kể hoạt tính của các enyme esterase và/ hoặc oxidase đặc hiệu được đo bằng quang phổ cho thấy khả năng của chúng liên quan đến kháng pyrethroid. Ở Peru, các chiến dịch giám sát được thực hiện từ năm 2000 cho thấy, chỉ có loài muỗi An. albimanus là kháng với pyrethroid.

Ở Mexico, kháng DDT mức cao kháng ở mức độ thấp đối với các nhóm hóa chất diệt côn trùng như lân hữu cơ,carbamate và pyrethroid đã được phát hiện ở các quần thể muỗi An. albimanus ngoài thực địa ở Chiapas, trước khi một dự án quản lý kháng hóa chất trên quy mô lớn được thực hiện. Kiểm tra sinh hóa phát hiện ra rằng kháng DDT là do mức độ hoạt động cao của men GST dẫn đến tăng tỷ lệ trao đổi chất từ DDT sang DDE, trong khi kháng carbamate là do sự thay đổi men acetylcholinesterase (AChE). Nhiều nghiên cứu gần đây được tiến hành ở miền Nam Bán đảo Yucatan cho thấy mức độ kháng cao đối với DDT, Deltamethrin và Pirimiphos - Methyl ở quần thể muỗi An. albimanus được thử nghiệm.

Thử nghiệm sinh hóa (Biochemical tests) cho thấy mức độ hoạt động cao của men GST, P450 và esteraza có thể liên quan đến kháng DDT và pyrethroid. Còn đối với kháng carbamate, pirimiphos-methyl có sự tương quan chặn chẽ với sự hiện diện nhạy cảm men acetylcholinesterase.

 
                          Hình 3. Các véc tơ sốt rét chiếm ưu thế ở châu Mỹ

Trên đây là những thông tin về phân bố, mức độ và cơ chế kháng ở các véc tơ sốt rét khu vực Mỹ Latinh. Điều này là cần thiết để thiết lập tăng cường năng lực giám sát hóa chất diệt côn trùng ở các nước Mỹ La tinh, nhằm cung cấp nhiều thông tin chính xác về tình hính kháng hóa chất ở các véc tơ sốt rét. Điều này sẽ cung cấp thông tin hữu ích cho các bên liên quan để thực hiện có hiệu quả và bền vững hơn trong chương trình phòng chống sốt rét ở khu vực.

Tài liệu tham khảo

[1] Djogbenou L, Chandre F, Berthomieu A, Dabire R, Koffi A, Alout H, Weill M: Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS o­nE 2008, 3(5):e2172.

[2] Ffrench-Constant RH: The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem Mol Biol 1994, 24(4):335-345.

[3] Andreasen MH, Ffrench-Constant RH: In situ hybridization to the Rdl locus o­n polytene chromosome 3L of Anopheles stephensi. Med Vet Entomol 2002, 16(4):452-455.

[4] Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, Coetzee M, Zheng L: Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 2005, 14(2):179-183.

[5] Davies TG, Field LM, Usherwood PN, Williamson MS: DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 2007, 59(3):151-162.

[6] Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WCt: Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 2009, 25(5):213-219.

[7] Martinez Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Molecular Biology 1998, 7(2):179-184.

[8] Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Molecular Biology 2000, 9(5):491-497.

[9] O'Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG: Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 2006, 396(2):255-263.

[10] Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, Wilding CS: Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Natl Acad Sci U S A 2012, 109(17):6614-6619.

[11] Plapp FW, Jr.: The genetic basis of insecticide resistance in the house fly: evidence that a single locus plays a major role in metabolic resistance to insecticides. Pesticide Biochemistry and Physiology 1984, 22(2):194-201.

[12] Georghiou GP, Ariaratnam V, Pasternak ME, Lin CS: Organophosphorus multiresistance in Culex pipiens quinquefasciatus in California. Journal of Economic Entomology 1975, 68(4):461-467.

[13] Vontas J, David JP, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H: Transcriptional analysis of insecticide resistance in Anopheles stephensi using crossspecies microarray hybridization. Insect Mol Biol 2007, 16(3):315-324.

[14] Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H: Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg 2009, 103(11):1139-1145.

[15] Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B: Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 2010, 3:67.

[16] Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh P: Methods of testing and analyzing excito-repellency responses of malaria vectors to insecticides. J Am Mosq Control Assoc 1997, 13(1):13-17.

[17] Chandre F, Darriet F, Duchon S, Finot L, Manguin S, Carnevale P, Guillet P: Modifications of pyrethroid effects associated with kdr mutation in Anopheles gambiae. Medical and Veterinary Entomology 2000, 14(1):81-88.

[18] Gahan JB, Lindquist AW: DDT residual sprays applied in buildings to control Anopheles quadrimaculatus. Journal of Economic Entomology 1945, 38 (2):223-230.

[19] Chareonviriyaphap T, Roberts DR, Andre RG, Harlan HJ, Manguin S, Bangs MJ: Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J Am Mosq Control Assoc 1997, 13(2):171-183.

[20] Garros C, Marchand RP, Quang NT, Hai NS, Manguin S: First record of Anopheles minimus C and significant decrease of An. minimus A in central Vietnam. J Am Mosq Control Assoc 2005, 21(2):139-143.

[21] Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF: Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 2011, 10:80.

[22] Moiroux N, Gomez MB, Pennetier C, Elanga E, Djenontin A, Chandre F, Djegbe I, Guis H, Corbel V: Changes in Anopheles funestus Biting Behavior Following Universal Coverage of Long-Lasting Insecticidal Nets in Benin. J Infect Dis 2012, 206(10): 1622-1629.

[23] WHO: Guidelines for testing mosquito adulticides intended for Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs). 2006, WHO/CDS/NTD/WHOPES/GCDDP/2006.3.

[24] WHO: Report of the WHO Informal Consultation Tests procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides o­n treated surfaces. In. Geneva: World Health Organization: Parasitic Diseases and Vector Control (PVC)/Communicable Disease Control, Prevention and Eradication (CPE); 1998: 43.

[25] Williams J, Pinto J: Training Manual o­n Malaria Entomology; For Entomology and Vector Control Technicians (Basic Level) In. Edited by USAID. Washington, D.C.; 2012: 78.

[26] Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, Sagnon N, Simard F, Coetzee M: Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J 2009, 8(1):299.

[27] Skovmand O, Bonnet J, Pigeon O, Corbel V: Median knock-down time as a new method for evaluating insecticide-treated textiles for mosquito control. Malar J 2008, 7:114.

[28] Brogdon WG, McAllister JC: Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J Am Mosq Control Assoc 1998, 14(2): 159-164.

[29] World Health Organization: Techniques to detect insecticide resistance mechanisms (field and laboratory manual). In. Edited by WHO/CDS/CPC/MAL/98.6 WHO. Geneva: World Health Organization; 1998.

[30] Munhenga G, Masendu HT, Brooke BD, Hunt RH, Koekemoer LK: Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe. Malar J 2008, 7:247.

[31] Okoye PN, Brooke BD, Koekemoer LL, Hunt RH, Coetzee M: Characterisation of DDT, pyrethroid and carbamate resistance in Anopheles funestus from Obuasi, Ghana. Trans R Soc Trop Med Hyg 2008, 102(6):591-598.

[32] Kelly-Hope L, Ranson H, Hemingway J: Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis 2008.

[33] Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, Mimpfoundi R, Simard F: Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health 2008, 13(4):476-486.

[34] Djegbe I, Boussari O, Sidick A, Martin T, Ranson H, Chandre F, Akogbeto M, Corbel V: Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa. Malaria Journal 2011, 10(1):261.

[35] Dabire KR, Diabate A, Pare-Toe L, Rouamba J, Ouari A, Fontenille D, Baldet T: Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J Vector Ecol 2008, 33(1):70-75.

[36] Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, Vontas J, Field LM: Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J 2007, 6:111.

[37] Corbel V, N'Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M: Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 2007, 101(3): 207-216.

[38] Diabate A: The Role of Agricultural Uses of Insecticides in Resistance to Pyrethroids in Anopheles gambiae S.L. in Burkina Faso. Am J Trop Med Hyg 2002, 67(6):617-622.

[39] Carnevale P, Toto JC, Guibert P, Keita M, Manguin S: Entomological survey and report of a knockdown resistance mutation in the malaria vector Anopheles gambiae from the Republic of Guinea. Trans R Soc Trop Med Hyg, 104(7):484-489.

[40] Yawson AE, McCall PJ, Wilson MD, Donnelly MJ: Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso. Med Vet Entomol 2004, 18(4):372-377.

[41] C. Fanello VP, A. della Torre, F. Santolamazza, G. Dolo, M. Coulibaly, A. Alloueche, C. F. Curtis, Y. T. Touré and M. Coluzzi: The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s. Insect Molecular Biology 2003, 12(3):241-245.

[42] Czeher C, Labbo R, Arzika I, Duchemin J-B: Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malaria Journal 2008, 7(1):189.

[43] Awolola TS, Brooke BD, Hunt RH, Coetze M: Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides, in south-western Nigeria. Annals of Tropical Medicine and Parasitology 2002, 96(8):849-852.

[44] Koffi AA, Alou LP, Adja MA, Kone M, Chandre F, N'Guessan R: Update o­n resistance status of Anopheles gambiae s.s. to conventional insecticides at a previous WHOPES field site, "Yaokoffikro", 6 years after the political crisis in Cote d'Ivoire. Parasit Vectors 2012, 5:68.

[135] Dabire KR, Diabate A, Agostinho F, Alves F, Manga L, Faye O, Baldet T: Distribution

of the members of Anopheles gambiae and pyrethroid knock-down resistance gene

(kdr) in Guinea-Bissau, West Africa. Bull Soc Pathol Exot 2008, 101(2):119-123.

620 Anopheles mosquitoes - New insights into malaria vectors

[46] Etang J, Fondjo E, Chandre F, Morlais I, Brengues C, Nwane P, Chouaibou M, Ndjemai H, Simard F: First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg 2006, 74(5):795-797.

[47] Ndjemai HN, Patchoke S, Atangana J, Etang J, Simard F, Bilong CF, Reimer L, Cornel A, Lanzaro GC, Fondjo E: The distribution of insecticide resistance in Anopheles gambiae s.l. populations from Cameroon: an update. Trans R Soc Trop Med Hyg 2009.

[48] Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbe C, Mimpfoundi R, Awono-Ambene HP, Simard F: Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect Dis 2009, 9:163.

[49] Kerah-Hinzoumbe C, Peka M, Nwane P, Donan-Gouni I, Etang J, Same-Ekobo A, Simard F: Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa. Malar J 2008, 7:192.

[50] Janeira F, Vicente JL, Kanganje Y, Moreno M, Do Rosario VE, Cravo P, Pinto J: A primer-introduced restriction analysis-polymerase chain reaction method to detect knockdown resistance mutations in Anopheles gambiae. J Med Entomol 2008, 45(2): 237-241.

[51] Mourou JR, Coffinet T, Jarjaval F, Pradines B, Amalvict R, Rogier C, Kombila M, Pages F: Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil, Gabon. Malar J 2010, 9:321.

[52] Himeidan YE, Chen H, Chandre F, Donnelly MJ, Yan G: Short report: permethrin and DDT resistance in the malaria vector Anopheles arabiensis from eastern Sudan. Am J Trop Med Hyg 2007, 77(6):1066-1068.

[53] Abdalla H, Matambo TS, Koekemoer LL, Mnzava AP, Hunt RH, Coetzee M: Insecticide susceptibility and vector status of natural populations of Anopheles arabiensis from Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene 2008, 102(3):263-271.

[54] Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IH, Ose K, Fotsing JM, Sagnon N, Fontenille D et al: Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol 2009, 9(1):16.

[55] Kulkarni MA, Malima R, Mosha FW, Msangi S, Mrema E, Kabula B, Lawrence B, Kinung'hi S, Swilla J, Kisinza W et al: Efficacy of pyrethroid-treated nets against malaria vectors and nuisance-biting mosquitoes in Tanzania in areas with long-term insecticide-treated net use. Trop Med Int Health 2007, 12(9):1061-1073.

[56] Kabula B, Tungu P, Matowo J, Kitau J, Mweya C, Emidi B, Masue D, Sindato C, Malima R, Minja J et al: Susceptibility status of malaria vectors to insecticides commonly used for malaria control in Tanzania. Trop Med Int Health 2012, 17(6):742-750.

[57] Coleman M, Casimiro S, Hemingway J, Sharp B: Operational impact of DDT reintroduction for malaria control o­n Anopheles arabiensis in Mozambique. J Med Entomol 2008, 45(5):885-890.

[58] Ratovonjato J, Le Goff G, Rajaonarivelo E, Rakotondraibe EM, Robert V: [Recent observations o­n the sensitivity to pyrethroids and DDT of Anopheles arabiensis and Anopheles funestus in the central Highlands of Madagascar; preliminary results o­n the absence of the kdr mutation in An. arabiensis]. Arch Inst Pasteur Madagascar 2003, 69(1-2):63-69.

[59] Ramphul U, Boase T, Bass C, Okedi LM, Donnelly MJ, Muller P: Insecticide resistance and its association with target-site mutations in natural populations of Anopheles gambiae from eastern Uganda. Trans R Soc Trop Med Hyg 2009.

[60] Verhaeghen K, Bortel WV, Roelants P, Okello PE, Talisuna A, Coosemans M: Spatiotemporal patterns in kdr frequency in permethrin and DDT resistant Anopheles gambiae s.s. from Uganda. Am J Trop Med Hyg 2010, 82(4):566-573.

[61] Abate A, Hadis M: Susceptibility of Anopheles gambiae s.l. to DDT, malathion, permethrin and deltamethrin in Ethiopia. Trop Med Int Health 2011, 16(4):486-491.

[62] Ochomo E, Bayoh MN, Brogdon WG, Gimnig JE, Ouma C, Vulule JM, Walker ED: Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations. Med Vet Entomol 2012.

[63] Mathias DK, Ochomo E, Atieli F, Ombok M, Bayoh MN, Olang G, Muhia D, Kamau L, Vulule JM, Hamel MJ et al: Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. Malar J 2011, 10:10.

[64] Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Ramdeen V, Phiri FN, Coetzer S, Mthembu D, Shinondo CJ, Chizema-Kawesha E et al: Insecticide resistance and the future of malaria control in Zambia. PLoS o­nE 2011, 6(9):e24336.

[65] Mouatcho JC, Munhenga G, Hargreaves K, Brooke BD, Coetzee M, Koekemoer LL: Pyrethroid resistance in a major African malaria vector Anopheles arabiensis from Mamfene, northern KwaZulu-Natal, South Africa. South African Journal of Science 2009, 105(3-4):127-131.

[66] Mouatcho JC, Hargreaves K, Koekemoer LL, Brooke BD, Oliver SV, Hunt RH, Coetzee M: Indoor collections of the Anopheles funestus group (Diptera: Culicidae) in sprayed houses in northern KwaZulu-Natal, South Africa. Malar J 2007, 6:30.

[67] Brooke BD, Kloke G, Hunt RH, Koekemoer LL, Temu EA, Taylor ME, Small G, Hemingway J, Coetzee M: Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bulletin of Entomological Research 2001, 91(4):265-272.

[68] Cuamba N, Morgan JC, Irving H, Steven A, Wondji CS: High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe District in Mozambique. PLoS o­nE 2010, 5(6):e11010.

[69] Kloke RG, Nhamahanga E, Hunt RH, Coetzee M: Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique. Parasit Vectors 2011, 4:16.

[70] Hunt R, Edwardes M, Coetzee M: Pyrethroid resistance in southern African Anopheles funestus extends to Likoma Island in Lake Malawi. Parasit Vectors 2010, 3:122.

[71] Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, Rehman A, Morgan J, Barnes KG, Hemingway J: Impact of pyrethroid resistance o­n operational malaria control in Malawi. Proc Natl Acad Sci U S A 2012, 109(47):19063-19070.

[72] Anto F, Asoala V, Anyorigiya T, Oduro A, Adjuik M, Owusu-Agyei S, Dery D, Bimi L, Hodgson A: Insecticide resistance profiles for malaria vectors in the Kassena-Nankana district of Ghana. Malaria Journal 2009, 8(1):81.

[73] Djouaka R, Irving H, Tukur Z, Wondji CS: Exploring mechanisms of multiple insecticide resistance in a population of the malaria vector Anopheles funestus in Benin. PloS o­nE 2011, 6(11):e27760.

[74] Dabire KR, Baldet T, Diabate A, Dia I, Costantini C, Cohuet A, Guiguemde TR, Fontenille D: Anopheles funestus (Diptera: Culicidae) in a humid savannah area of western Burkina Faso: bionomics, insecticide resistance status, and role in malaria transmission. J Med Entomol 2007, 44(6):990-997.

[75] Faraj C, Adlaoui E, Brengues C, Fontenille D, Lyagoubi M: [Resistance of Anopheles labranchiae to DDT in Morocco: identification of the mechanisms and choice ofreplacement insecticide]. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2008, 14(4):776-783.

[76] Mostafa AA, Allam KA: Studies o­n the present status of insecticides resistance o­n mosquitoes using the diagnostic dosages in El-Fayium Governorate, a spot area of malaria in Egypt. J Egypt Soc Parasitol 2001, 31(1):177-186.

[77] Balkew M, Elhassan I, Ibrahim M, GebreMichael T, Engers H: Very high DDT-resistant population of Anopheles pharoensis Theobald (Diptera: Culicidae) from Gorgora, northern Ethiopia. Parasite 2006, 13(4):327-239.

[78] Yadouleton AW, Padonou G, Asidi A, Moiroux N, Bio-Banganna S, Corbel V, N'Guessan R, Gbenou D, Yacoubou I, Gazard K et al: Insecticide resistance status in Anopheles gambiae in southern Benin. Malar J 2010, 9:83.

[79] Pinto J, Lynd A, Vicente JL, Santolamazza F, Randle NP, Gentile G, Moreno M, Simard F, Charlwood JD, do Rosario VE et al: Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae. PLoS o­nE 2007, 2(11):e1243.

[80] della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M: Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 2001, 10(1):9-18.

[81] Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N, Guillet P, Raymond M: The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Molecular Biology 2000, 9(5):451-455.

[82] Reimer LJ, Tripet F, Slotman M, Spielman A, Fondjo E, Lanzaro GC: An unusual distribution of the kdr gene among populations of Anopheles gambiae on the island of Bioko, Equatorial Guinea. Insect Mol Biol 2005, 14(6):683-688.

[83] Protopopoff N, Verhaeghen K, Van Bortel W, Roelants P, Marcotty T, Baza D, D'Alessandro U, Coosemans M: A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands. Trop Med Int Health 2008, 13(12):1479-1487.

[84] Pinto J, Lynd A, Elissa N, Donnelly MJ, Costa C, Gentile G, Caccone A, do Rosario VE: Co-occurrence of East and West African kdr mutations suggests high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Libreville, Gabon. Med Vet Entomol 2006, 20(1):27-32.

[85] Moreno M, Vicente JL, Cano J, Berzosa PJ, de Lucio A, Nzambo S, Bobuakasi L, Buatiche JN, o­ndo M, Micha F et al: Knockdown resistance mutations (kdr) and insecticide susceptibility to DDT and pyrethroids in Anopheles gambiae from Equatorial Guinea. Trop Med Int Health 2008, 13(3):430-433.

[86] Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M: Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based o­n FRET/Melt Curve analysis. Malaria Journal 2006, 5(1):16.

[87] Koekemoer LL, Spillings BL, Christian RN, Lo TC, Kaiser ML, Norton RA, Oliver SV, Choi KS, Brooke BD, Hunt RH et al: Multiple insecticide resistance in Anopheles gambiae (Diptera: Culicidae) from Pointe Noire, Republic of the Congo. Vector Borne Zoonotic Dis 2011, 11(8):1193-1200.

[88] Reimer L, Fondjo E, Patchoke S, Diallo B, Lee Y, Ng A, Ndjemai HM, Atangana J, Traore SF, Lanzaro G et al: Relationship between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae. J Med Entomol 2008, 45(2):260-266.

[89] Badolo A, Traore A, Jones CM, Sanou A, Flood L, Guelbeogo WM, Ranson H, Sagnon N: Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance o­n the rise? Malar J 2012, 11:232.

[90] Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, Donnelly MJ, Petrarca V, Simard F, Pinto J et al: Distribution of knock-down resistance mutations in 624 Anopheles mosquitoes - New insights into malaria vectors Anopheles gambiae molecular forms in west and west-central Africa. Malar J 2008, 7(1): 74.

[91] Ridl F, Bass C, Torrez M, Govender D, Ramdeen V, Yellot L, Edu A, Schwabe C, Mohloai P, Maharaj R et al: A pre-intervention study of malaria vector abundance in Rio Muni, Equatorial Guinea: Their role in malaria transmission and the incidence of insecticide resistance alleles. Malaria Journal 2008, 7(1):194.

[92] Reimer L, Fondjo E, Patchok, Salomon, Diallo B, Lee Y, Ng A, Ndjemai HM, Atangana J, Traore SF et al: Relationship Between kdr Mutation and Resistance to Pyrethroid and DDT Insecticides in Natural Populations of Anopheles gambiae. Journal of Medical Entomology 2008, 45:260-266.

[93] Matambo TS, Abdalla H, Brooke BD, Koekemoer LL, Mnzava A, Hunt RH, Coetzee M: Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the kdr mutation. Medical and Veterinary Entomology 2007, 21(1):97-102.

[94] Kulkarni M, Rowland M, Alifrangis M, Mosha F, Matowo J, Malima R, Peter J, Kweka E, Lyimo I, Magesa S et al: Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malaria Journal 2006, 5(1):56.

[95] Chen H, Githeko AK, Githure JI, Mutunga J, Zhou G, Yan G: Monooxygenase Levels and Knockdown Resistance (kdr) Allele Frequencies in Anopheles gambiae and Anopheles arabiensis in Kenya. Journal of Medical Entomology 2008, 45:242-250.

[96] Etang J, Manga L, Toto JC, Guillet P, Fondjo E, Chandre F: Spectrum of metabolicbased resistance to DDT and pyrethroids in Anopheles gambiae s.l. populations from Cameroon. J Vector Ecol 2007, 32(1):123-133.

[97] Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, Coetzee M: Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol 2003, 17(4):417-422.

[98] Amenya DA, Naguran R, Lo TC, Ranson H, Spillings BL, Wood OR, Brooke BD, Coetzee M, Koekemoer LL: Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol Biol 2008, 17(1):19-25.

[99] Somboon P, Prapanthadara LA, Suwonkerd W: Insecticide susceptibility tests of Anopheles minimus s.l., Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. Southeast Asian J Trop Med Public Health 2003, 34(1):87-93.

[100] Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Coosemans M: Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region. Malar J 2009, 8:84.

[101] Chareonviriyaphap T, Rongnoparut P, Chantarumporn P, Bangs MJ: Biochemical detection of pyrethroid resistance mechanisms in Anopheles minimus in Thailand. J Vector Ecol 2003, 28(1):108-116.

[102] Rodpradit P, Boonsuepsakul S, Chareonviriyaphap T, Bangs MJ, Rongnoparut P: Cytochrome P450 genes: molecular cloning and overexpression in a pyrethroid-resistant strain of Anopheles minimus mosquito. J Am Mosq Control Assoc 2005, 21(1):71-79.

[103] Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Keokenchanh K, Coosemans M: Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors 2011, 3(1):59.

[104] Kang S, Jung J, Lee S, Hwang H, Kim W: The polymorphism and the geographical distribution of the knockdown resistance (kdr) of Anopheles sinensis in the Republic of Korea. Malar J 2012, 11:151.

[105] Tan WL, Wang ZM, Li CX, Chu HL, Xu Y, Dong YD, Wang ZC, Chen DY, Liu H, Liu DP et al: First report o­n co-occurrence knockdown resistance mutations and susceptibility to beta-cypermethrin in Anopheles sinensis from Jiangsu Province, China. PloS o­nE 2012, 7(1):e29242.

[106] Syafruddin D, Hidayati AP, Asih PB, Hawley WA, Sukowati S, Lobo NF: Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia. Malar J 2010, 9:315.

[107] Singh OP, Dykes CL, Das MK, Pradhan S, Bhatt RM, Agrawal OP, Adak T: Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India. Malar J 2010, 9:146.

[108] Mishra AK, Chand SK, Barik TK, Dua VK, Raghavendra K: Insecticide resistance status in Anopheles culicifacies in Madhya Pradesh, central India. J Vector Borne Dis 2012, 49(1):39-41.

[109] Sharma SN, Shukla RP, Raghavendra K: Susceptibility status of An. fluviatilis and An.culicifacies to DDT, deltamethrin and lambdacyhalothrin in District Nainital, Uttar Pradesh. Indian J Malariol 1999, 36(3-4):90-93.

[110] Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T: Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar J 2011, 10:59.

[111] Tikar SN, Mendki MJ, Sharma AK, Sukumaran D, Veer V, Prakash S, Parashar BD: Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J InsectSci 2011, 11:85.

[112] Baruah K, Lal S: A report o­n the susceptibility status of Anopheles minimus (Theobald) against DDT and deltamethrin in three districts of Assam. J Vector Borne Dis 2004, 41(1-2):42-44.

[113] Karunaratne SH, Hemingway J: Malathion resistance and prevalence of the malathion carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka. Bull World Health Organ 2001, 79(11):1060-1064.

[114] Kelly-Hope LA, Yapabandara AM, Wickramasinghe MB, Perera MD, Karunaratne SH, Fernando WP, Abeyasinghe RR, Siyambalagoda RR, Herath PR, Galappaththy GN et al: Spatiotemporal distribution of insecticide resistance in Anopheles culicifacies and Anopheles subpictus in Sri Lanka. Trans R Soc Trop Med Hyg 2005, 99(10):751-761.

[115] Perera MD, Hemingway J, Karunaratne SP: Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malar J 2008, 7:168.

[116] Surendran SN, Jude PJ, Weerarathne TC, Parakrama Karunaratne SH, Ramasamy R: Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka. Parasit Vectors 2012, 5:34.

[117] Mittal PK, Wijeyaratne P, Pandey S: Status of Insecticide Resistance of Malaria, Kalaazar and Japanese Encephalitis Vectors in Bangladesh, Bhutan, India and Nepal (BBIN). In. Edited by Project EH. Washington 2004.

[118] Rowland M: Location ofthe gene for malathion resistance in Anopheles stephensi (Diptera: Culicidae) from Pakistan. J Med Entomol 1985, 22(4):373-380.

[119] Abai MR, Mehravaran A, Vatandoost H, Oshaghi MA, Javadian E, Mashayekhi M, Mosleminia A, Piyazak N, Edallat H, Mohtarami F et al: Comparative performance of imagicides o­n Anopheles stephensi, main malaria vector in a malarious area, southern Iran. J Vector Borne Dis 2008, 45(4):307-312.

[120] Lak SH, vatandoost H, Entezarmahdi MR, Ashraf H, Abai MR, Nazari M: Monitoring of Insecticide Resistance in Anopheles sacharovi (Favre, 1903) in Borderline of Iran, Armenia, Naxcivan and Turkey, 2001. Iranian J Publ Health 2002, 31(3-4):96-99.

[121] Vatandoost H, Mashayekhi M, Abaie MR, Aflatoonian MR, Hanafi-Bojd AA, Sharifi I: Monitoring of insecticides resistance in main malaria vectors in a malarious area of Kahnooj district, Kerman province, southeastern Iran. J Vector Borne Dis 2005, 42(3): 100-108.

[122] Malcolm CA: Current status of pyrethroid resistance in anophelines. Parasitol Today 1988, 4(7):S13-15.

[123] Quinones ML, Suarez MF: Irritability to DDT of natural populations of the primary malaria vectors in Colombia. J Am Mosq Control Assoc 1989, 5(1):56-59.

[124] Suarez MF, Quinones ML, Palacios JD, Carrillo A: First record of DDT resistance in Anopheles darlingi. J Am Mosq Control Assoc 1990, 6(1):72-74.

[125] Fonseca-Gonzalez I: Estatus de la resistencia a insecticidas de los vectores primarios de malaria y dengue en Antioquia, Chocó, Norte de Santander y Putumayo, Colombia. Universidad de Antioquia, Colombia; 2008.

[126] Fonseca-Gonzalez I, Cardenas R, Quinones ML, McAllister J, Brogdon WG: Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldon populations from malaria endemic areas in Colombia. Parasitol Res 2009, 105(5):1399-1409.

[127] Chareonviriyaphap T, Golenda CF, Roberts DR, Andre RG: Identification of Elevated Esterase Activity in a Pyrethroid-Resistant Population of Anopheles albimanus Wiedemann. ScienceAsia 1999, 25 153-156.

[128] Brogdon WG, McAllister JC, Corwin AM, Cordon Rosales C: Independent selection of multiple mechanisms for pyrethroid resistance in Guatemalan Anopheles albimanus (Diptera: Culicidae). Journal of Economic Entomology 1999, 92(2):298-302.

[129] Zamora Perea E, Balta Leon R, Palomino Salcedo M, Brogdon WG, Devine GJ: Adaptation and evaluation of the bottle assay for monitoring insecticide resistance in disease vector mosquitoes in the Peruvian Amazon. Malar J 2009, 8:208.

[130] Hemingway J, Penilla RP, Rodriguez AD, James BM, Edge W, Rogers H, Rodriguez MH: Resistance management strategies in malaria vector mosquito control. A largescale field trial in Southern Mexico. Pesticide Science 1997, 51(3):375-382.

[131] Dzul FA, Patricia Penilla R, Rodriguez AD: [Susceptibility and insecticide resistance mechanisms in Anopheles albimanus from the southern Yucatan Peninsula, Mexico]. Salud Publica Mex 2007, 49(4):302-311.

[132] South Africa Department of Health: Malaria Updates. In. Pretoria, S.A: S.A.D.H.; 2003.

[133] Maharaj R, Mthembu DJ, Sharp BL: Impact of DDT re-introduction o­n malaria transmission in KwaZulu-Natal. S Afr Med J 2005, 95(11):871-874.

[134] Roberts DR, Manguin S, Mouchet J: DDT house spraying and re-emerging malaria. Lancet 2000, 356(9226):330-332.

[135] Protopopoff N, Van Bortel W, Marcotty T, Van Herp M, Maes P, Baza D, D'Alessandro U, Coosemans M: Spatial targeted vector control in the highlands of Burundi and its impact o­n malaria transmission. Malar J 2007, 6:158.

[136] Trape J-F, Tall A, Diagne N, Ndiath O, Ly AB, Faye J, Dieye-Ba F, Roucher C, Bouganali C, Badiane A et al: Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. The Lancet Infectious Diseases 2011.

[137] Lengeler C: Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database of Systematic reviews 2009(2):1-58.

[138] Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, Bruce J, Mosha FW, Rowland MW: Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS o­nE 2012, 7(3):e31481.

[139] Bradley J, Matias A, Schwabe C, Vargas D, Monti F, Nseng G, Kleinschmidt I: Increased risks of malaria due to limited residual life of insecticide and outdoor biting versus protection by combined use of nets and indoor residual spraying o­n Bioko Island, Equatorial Guinea. Malar J 2012, 11:242.

[140] Henry MC, Assi SB, Rogier C, Dossou-Yovo J, Chandre F, Guillet P, Carnevale P: Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Cote d'Ivoire. Am J Trop Med Hyg 2005, 73(5):859-864.

[141] Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, Moiroux N, Chabi J, Banganna B, Padonou GG et al: Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis 2012, 12(8):617-626.

[142] Darriet F, N' Guessan R, Koffi AA, Konan L, Doannio JMC, Chandre F, Carnevale P: Impact of the resistance to pyrethroids o­n the efficacy of impregnated bednets used as a means of prevention against malaria: results of the evaluation carried out with deltamethrin SC in experimental huts. Bulletin de la Société de Pathologie Exotique 2000, 93(2):131-134.

[143] Corbel V, Chandre F, Brengues C, Akogbeto M, Lardeux F, Hougard JM, Guillet P: Dosage-dependent effects of permethrin-treated nets o­n the behaviour of Anopheles gambiae and the selection of pyrethroid resistance. Malar J 2004, 3(1):22.

[144] N'Guessan R, Corbel V, Akogbeto M, Rowland M: Reduced efficacy of insecticidetreated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 2007, 13(2):199-206.

[145] N'Guessan R, Asidi A, Boko P, Odjo A, Akogbeto M, Pigeon O, Rowland M: An experimental hut evaluation of PermaNet(R) 3.0, a deltamethrin-piperonyl butoxide combination net, against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in southern Benin. Trans R Soc Trop Med Hyg 2010, 104(12):758-765.

[146] Asidi A, N'Guessan R, Akogbeto M, Curtis C, Rowland M: Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis 2012, 18(7):1101-1106.

[147] Osse R, Gnanguenon V, Sezonlin M, Aikpon R, Padonou G, Yadouleton A, Akogbeto M: Relationship between the presence of kdr and Ace-1 mutations and the infection with Plasmodium falciparum in Anopheles gambiae s.s. in Benin. Journal of Parassitology & Vector Biology 2012, 4(3):31-39.

[148] Moiroux N, Boussari O, Djenontin A, Damien G, Cottrell G, Henry MC, Guis H, Corbel V: Dry season determinants of malaria disease and net use in Benin, West Africa. PLoS o­nE 2012, 7(1):e30558.

[149] Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP: Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact o­n larval tolerance to chemical insecticides. Insect Biochem Mol Biol 2008, 38(5):540-551.

[150] IRAC: Prevention and Management of Insecticide Resistance in Vectors of Public Health Importance In: Resistance Management for Sustainable Agriculture and Improved Public Health : Second Edition 2010 Insecticide Resistance Action Commitee; 2010: 72pp.

[151] Georghiou GP, Taylor CE: Genetic and biological influences in the evolution of insecticide resistance. Journal of Economic Entomology 1977, 70(3):319-323.

[152] Denholm I, Rowland MW: Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 1992, 37:91-112.

[153] Djogbenou L, Weill M, Hougard JM, Raymond M, Akogbeto M, Chandre F: Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 2007, 44(5):805-810.

[154] Berticat C, Bonnet J, Duchon S, Agnew P, Weill M, Corbel V: Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evol Biol 2008, 8:104.

[155] Moore JH, Williams SM: Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 2005, 27(6):637-646.

[156] Shono T, Zhang L, Scott JG: Indoxacarb resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology 2004, 80(2):106-112.

[157] Shono T, Kasai S, Kamiya E, Kono Y, Scott JG: Genetics and mechanisms of permethrin resistance in the YPER strain of house fly. Pesticide Biochemistry and Physiology 2002, 73(1):27-36.

[158] Scott JG, Shono T, Georghiou GP: Genetic analysis of permethrin resistance in the house fly, Musca domestica L. Experientia 1984, 40(12):1416-1418.

[159] Hardstone MC, Leichter CA, Scott JG: Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450-monooxygenase detoxification, in mosquitoes. J Evol Biol 2009, 22(2):416-423.

[160] Berticat C, Boquien G, Raymond M, Chevillon C: Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 2002, 79(1):41-47.

[161] Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y: Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution Int J Org Evolution 2004, 58(3):579-586.

[162] Foster SP, Harrington R, Devonshire AL, Denholm I, Devine GJ, Kenward MG: Comparative survival of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in low temperature field trials. Bull Ent Res 1996, 86:17-27.

[163] Shi MA, Lougarre A, Alies C, Fremaux I, Tang ZH, Stojan J, Fournier D: Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evol Biol 2004, 4:5.

[164] Djogbenou L, Noel V, Agnew P: Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar J 2010, 9(1):12.

[165] Brogdon WG, McAllister JC: Insecticide resistance and vector control. Emerg Infect Dis 1998, 4(4):605-613.

[166] Diabate A, Baldet T, Chandre F, Akoobeto M, Guiguemde TR, Darriet F, Brengues C, Guillet P, Hemingway J, Small GJ et al: The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 2002, 67(6):617-622.

[167] Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabire R, Aikpon R, Boko M, Glitho I et al: Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in northern Benin. Parasit Vectors 2011, 4:60.

[168] Harrison G: Mosquitoes, malaria and man: A history of hostilities since 1880.; 1978.

[169] Read AF, Lynch PA, Thomas MB: How to make evolution-proof insecticides for malaria control. PLoS Biol 2009, 7(4):e1000058.

[170] Roush RT, Hoy CW, Ferro DN, Tingey WM: Insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae): influence of crop rotation and insecticide use. Journal of Economic Entomology 1990, 83(2):315-319.

[171] Georghiou GP: Insecticide resistance and prospects for its management. Residue Reviews 1980, 76:131-145.

[172] Tabashnik BE: Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J Econ Entomol 1989, 82(5):1263-1269.

[173] Chitnis N, Schapira A, Smith T, Steketee R: Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg 2010, 83(2):230-240.

Distribution, Mechanisms, Impact and Management of Insecticide Resistance in Malaria Vectors: A Pragmatic Review

[174] Yakob L, Dunning R, Yan G: Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms. J R Soc Interface 2011, 8(59):799-806.

[175] World Health Organization: Global strategic framework for integrated vector management. Geneva; 2004.

[176] Curtis CF: Theoretical models of the use of insecticide mixtures for management of resistance. Bull Ent Res 1985, 75: 259-265.

[177] Hougard JM, Poudiougo P, Guillet P, Back C, Akpoboua LK, Quillevere D: Criteria for the selection of larvicides by the o­nchocerciasis Control Programme in west Africa. Ann Trop Med Parasitol 1993, 87(5):435-442.

[178] WHO: Pesticides and their application for the control of vectors and pests of public health importance; Sixth edition. In. Edited by WHO/CDS/NTD/WHOPES/GCDPP/2006.1 WHO, Geneva; 2006: 1-125.

[179] Corbel V, Chabi J, Dabire RK, Etang J, Nwane P, Pigeon O, Akogbeto M, Hougard JM: Field efficacy of a new mosaic long-lasting mosquito net (PermaNet 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa. Malar J 2010, 9:113.

[180] Killeen GF, Okumu FO, N'Guessan R, Coosemans M, Adeogun A, Awolola S, Etang J, Dabire RK, Corbel V: The importance of considering community-level effects when selecting insecticidal malaria vector products. Parasit Vectors 2011, 4:160.

[181] Mani GS: Evolution of resistance in the presence of two insecticides. Genetics 1985, 109(4):761-783.

[182] Roush RT: Designing resistance management programs: how can you choose? Pesticide Science 1989, 26(4):423-441.

[183] Hougard JM, Corbel V, N'Guessan R, Darriet F, Chandre F, Akogbeto M, Baldet T, Guillet P, Carnevale P, Traore-Lamizana M: Efficacy of mosquito nets treated with insecticide mixtures or mosaics against insecticide resistant Anopheles gambiae and Culex quinquefasciatus (Diptera: Culicidae) in Cote d'Ivoire. Bull Entomol Res 2003, 93(6):491-498.

[184] Asidi AN, N'Guessan R, Koffi AA, Curtis CF, Hougard JM, Chandre F, Corbel V, Darriet F, Zaim M, Rowland MW: Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes. Malar J 2005, 4(1):25.

[185] Ohashi K, Nakada K, Ishiwatari T, Miyaguchi J, Shono Y, Lucas JR, Mito N: Efficacy of pyriproxyfen-treated nets in sterilizing and shortening the longevity of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 2012, 49(5):1052-1058.

[186] Mosqueira B, Duchon S, Chandre F, Hougard JM, Carnevale P, Mas-Coma S: Efficacy of an insecticide paint against insecticide-susceptible and resistant mosquitoes – part 1: laboratory evaluation. Malar J 2010, 9:340.

[187] Ngufor C, N'Guessan R, Boko P, Odjo A, Vigninou E, Asidi A, Akogbeto M, Rowland M: Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin. Malar J 2011, 10:343.

[188] Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, Mabunda SJ, Coleman M: Combining indoor residual spraying and insecticide-treated net interventions. Am J

Trop Med Hyg 2009, 81(3):519-524.

[189] Okumu FO, Moore SJ: Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J 2011, 10:208.

[190] Brosseau L, Drame PM, Besnard P, Toto JC, Foumane V, Le Mire J, Mouchet F, Remoue F, Allan R, Fortes F et al: Human antibody response to Anopheles saliva for comparing the efficacy of three malaria vector control methods in Balombo, Angola. PloS o­nE 2012, 7(9):e44189.

[191] Bill_&_Melinda_Gates_Fondation, Boston_Consulting_Group: Market Assessment for Public Health Pesticide Products. In.; 2007.

 

Ngày 21/04/2014
TS.Nguyễn Xuân Quang, ThS. Đỗ Văn Nguyên
và Ths.Bs. Huỳnh Hồng Quang
 

THÔNG BÁO

   Dịch vụ khám chữa bệnh chuyên khoa của Viện Sốt rét-KST-CT Quy Nhơn khám bệnh tất cả các ngày trong tuần (kể cả thứ 7 và chủ nhật)

   THÔNG BÁO: Phòng khám chuyên khoa Viện Sốt rét-KST-CT Quy Nhơn xin trân trọng thông báo thời gian mở cửa hoạt động trở lại vào ngày 20/10/2021.


 LOẠI HÌNH DỊCH VỤ
 CHUYÊN ĐỀ
 PHẦN MỀM LIÊN KẾT
 CÁC VẤN ĐỀ QUAN TÂM
 QUẢNG CÁO

Trang tin điện tử Viện Sốt rét - Ký Sinh trùng - Côn trùng Quy Nhơn
Giấy phép thiết lập số 53/GP - BC do Bộ văn hóa thông tin cấp ngày 24/4/2005
Địa chỉ: Khu vực 8-Phường Nhơn Phú-Thành phố Quy Nhơn-Tỉnh Bình Định.
Tel: (84) 0256.3846.892 - Fax: (84) 0256.3647464
Email: impequynhon.org.vn@gmail.com
Trưởng Ban biên tập: TTND.PGS.TS. Hồ Văn Hoàng-Viện trưởng
Phó Trưởng ban biên tập: TS.BS.Huỳnh Hồng Quang-Phó Viện trưởng
• Thiết kế bởi công ty cổ phần phần mềm: Quảng Ích