Home HOMEPAGE   Thu, 03/28/2024 GMT + 7
    Q & A   Site map Forum   Site map Sitemap   E-mali Contact   Vietnamese Vietnamese
IMPE-QN
Web Sites & Commerce News - Events
Web Sites & Commerce Introduction
Web Sites & Commerce Collaborative activities
Web Sites & Commerce Training
Finance & Retail Specific research studies
Epidemiology
Entomology
Malariology
Malaria parasitology
Intestinal parasitology
Molecular - biology
Web Sites & Commerce Publications
Web Sites & Commerce Mass organization activities
Web Sites & Commerce Legal documents
Web Sites & Commerce Statistical data
Web Sites & Commerce Work safety
Web Sites & Commerce Vietnam`s Physicians
Web Sites & Commerce Malariology
Web Sites & Commerce Helminthology
Web Sites & Commerce Other vector-borne diseases

SEARCH

LOGIN
Username
Password

WEBLINKS
Other links

Visiting users: 388
5 2 5 1 3 5 1 4
Online
3 8 8
 Specific research studies Molecular - biology
Plasmodium falciparum
(Photo: arstechnica.com)
Enzymes Possible Targets for New Anti-Malaria Drugs

Researchers at the Perelman School of Medicine at the University of Pennsylvania, Monash University, and Virginia Tech have used a set of novel inhibitors to analyze how the malaria parasite,Plasmodium falciparum, uses enzymes to chew up human hemoglobin from host red blood cells as a food source. They have validated that two of these parasite enzymes called peptidases are potential anti-malarial drug targets.

 

The research appeared in the Aug. 15 early o­nline issue of theProceedings of the National Academy Sciences.

"The basis for this research was to use small molecule inhibitors to help understand the biology of the malaria parasite and to find new drug targets as drug-resistant parasites necessitate the discovery of new antimalarials," said Doron C. Greenbaum, assistant professor of pharmacology at Penn, who lead the collaborative study.

The P. falciparum parasite, delivered in a mosquito bite, causes malaria o­nce it takes up residence in the human host's red blood cells and begins to digest hemoglobin, the protein that carries oxygen. The parasite multiplies and is picked up from the bloodstream when the mosquito feeds. Scientists are interested in determining which enzymes are responsible for generating amino acids from the hemoglobin in the feeding process.

Two enzymes, called aminopeptidases, have been proposed as being responsible for releasing single amino acids from proteins, or peptides. However, "there has been controversy regarding where this takes place and which enzymes are responsible," said Michael Klemba, associate professor of biochemistry with the Vector-Borne Infectious Disease Research Group at Virginia Tech, who collaborated o­n the evaluation of new aminopeptidase inhibitors with Greenbaum's lab. "It has been difficult to study their specific roles in breaking down hemoglobin."

The Penn team developed chemical genetic tools called activity-based probes that enabled the researchers to specifically inhibit o­ne or the other of the enzymes. "When we inhibited the parasite enzyme PfA-M1, it blocked hemoglobin degradation, starving the parasite to death," said Greenbaum.

Inhibition of a second enzyme, leucyl aminopeptidase, showed it to have an important role, but earlier in the parasite's life cycle within the red blood cell.

"Our collective data suggest that these two MAPs are both potential antiparasitic drug targets," said Greenbaum.

Other co-authors o­n the paper are Geetha Velmourougane, postdoctoral fellow at Penn; Seema Dalal, research scientist in biochemistry at Virginia Tech; Gilana Reiss, graduate student in Pharmacology, Penn; James C. Whisstock, Monash University, Logan Fellow and scientific director of the Victorian Bioinformatics Consortium; Ozlem o­nder, postdoctoral associate in biology, and Dustin Brisson, assistant professor of biology, both at Penn; Sheena McGowan, senior research fellow at Monash University.

"Dr. Greenbaum's team developed the probes and Virginia Tech's researchers tested the probes o­n purified enzymes and determined the potency of the probes against each of the two aminopeptidases," said Klemba. "Dr. Whisstock's team at Monash University did the structural biology, providing the high-resolution atomic structure of the enzymes."

09/28/2011
(Source: ScienceDaily, Sep. 27, 2011)  

Announcement

LIBRARY
Book
Magazine
Document
Photos
Thesis
Documentary form
Research studies
PROFFESSIONAL SOFTWARE
Malaria forecast & management
Document management
Personel management
LEGAL DOCUMENTS
Law
Decision
Decree
Instruction
Circular
Official document
Reports
Others
SPECIFIED IMFORMATION
Malaria facts
Malaria epidemic
Petechial fever
HEALTH SERVICES
Hospital & medical centre
Drugstore
Surgery
Your doctor

Institue of Malariology Parastology and Entomology Quy Nhon
Address: 611B Nguyen Thai Hoc Str,. Quy Nhon City
Tel: (84) 056 846571 Fax: (84) 056 846755
• Designed by Quang Ich JSC