Home HOMEPAGE   Fri, 03/29/2024 GMT + 7
    Q & A   Site map Forum   Site map Sitemap   E-mali Contact   Vietnamese Vietnamese
IMPE-QN
Web Sites & Commerce News - Events
Web Sites & Commerce Introduction
Web Sites & Commerce Collaborative activities
Web Sites & Commerce Training
Web Sites & Commerce Specific research studies
Web Sites & Commerce Publications
Web Sites & Commerce Mass organization activities
Web Sites & Commerce Legal documents
Web Sites & Commerce Statistical data
Web Sites & Commerce Work safety
Web Sites & Commerce Vietnam`s Physicians
Finance & Retail Malariology
Epidemiology
Malaria parasitology
Entomology
Diagnosis and Treament
Antimalarial drugs and drug resistant parasites
Malaria Vaccines
Health education and communication
Molecular - biology
Web Sites & Commerce Helminthology
Web Sites & Commerce Other vector-borne diseases

SEARCH

LOGIN
Username
Password

WEBLINKS
Other links

Visiting users: 377
5 2 5 2 0 0 2 6
Online
3 7 7
 Malariology Diagnosis and Treament
Malaria parasites invasing human bloodcells.
Malaria: Study On Its Growth & Escape In Red Blood Cells Towards Development Of New Treatment

Malaria is o­ne of the few parasites that can infect red blood cells as it multiplies inside an internal compartment called parasitophorous vacuole. Eventually, both the vacuole and red blood cells break allow the release of a new generation of parasites.

 

The study was conducted by Mike Blackman together with Emma Sherling and Christiaan van Ooji. According to Phys.Org, the parasite needs to change the cell surface for the production of channels to import the substances it needs to grow. The researchers wanted to discover the mechanism of how the parasites of malaria do these.

 Blackman and his team evaluated the role of a protein called RhopH3 in the life cycle of malaria. RhopH3 comes from structures called rhoptries which the parasites discharge as it invades red blood cells. The results showed that RhopH3 is important in the role of nutrient import channels in the blood cell. In addition, it was also discovered that RhopH3 is needed in the efficient invasion of red blood cells proving that the protein is essential for the survival of the parasite inside the blood cell.

This discovery can lead in advancing the treatment of malaria knowing that resistance is already demoralized some of the antimalarial drugs. Through RhopH3 and other mechanisms involved, the development of new classes of drug to stop malaria from evading and establishing growth in the blood cell will be carried out.

 (Photo : Paula Bronstein/Getty Images)

Meanwhile, as reported by World Health Organization (WHO), malaria is a life-threatening disease that is transmitted through the bite of infected female Anopheles mosquito. The infection is preventable and curable as in 2015 the incidence among populations risk fell by 21 percent globally. Moreover, the mortality rate among populations at risk fell by 29 percent globally while 35 percent among children under 5.

Malaria is caused by "Plasmodium" parasites; P. falciparum is prevalent in African continents while P. vivax is the most dominant parasite outside of sub- Saharan Africa. The transmission is more intense in places where the mosquito lifespan is longer. The treatment includes the different combination of anti-parasitic drugs such as artemisinin-based combination therapy (ACT).

 

03/28/2017
(Source: www.sciencetimes.com)  

Announcement

LIBRARY
Book
Magazine
Document
Photos
Thesis
Documentary form
Research studies
PROFFESSIONAL SOFTWARE
Malaria forecast & management
Document management
Personel management
LEGAL DOCUMENTS
Law
Decision
Decree
Instruction
Circular
Official document
Reports
Others
SPECIFIED IMFORMATION
Malaria facts
Malaria epidemic
Petechial fever
HEALTH SERVICES
Hospital & medical centre
Drugstore
Surgery
Your doctor

Institue of Malariology Parastology and Entomology Quy Nhon
Address: 611B Nguyen Thai Hoc Str,. Quy Nhon City
Tel: (84) 056 846571 Fax: (84) 056 846755
• Designed by Quang Ich JSC